• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Fgl
      • Vwsim
      • Vl
        • Syntax
        • Loader
        • Warnings
        • Getting-started
        • Utilities
        • Printer
        • Kit
          • Vl-lint
            • Vl-lintconfig-p
            • Condcheck
            • Lint-warning-suppression
            • Lucid
            • Lvaluecheck
            • Vl-interfacelist-alwaysstyle
            • Truncation-warnings
            • Vl-modulelist-alwaysstyle
            • Skip-detection
            • Vl-lint-report
            • Vl-lintresult
            • Vl::vl-design-sv-use-set
            • Oddexpr-check
            • Leftright-check
            • Duplicate-detect
            • Selfassigns
            • *vl-lint-help*
            • Arith-compare-check
            • Dupeinst-check
            • Qmarksize-check
            • Lint-whole-file-suppression
            • Run-vl-lint-main
            • Logicassign
            • Run-vl-lint
            • Vl-print-certain-warnings
            • Duperhs-check
              • Vl-modulelist-duperhs-check
              • Vl-maybe-warn-duperhs
              • Vl-duperhs-too-trivial-p
              • Vl-warnings-for-duperhs-alist
              • Vl-make-duperhs-alist-aux
              • Vl-module-duperhs-check
              • Vl-make-duperhs-alist
              • Vl-design-duperhs-check
              • Vl-duperhs-alist
                • Vl-duperhs-alist-p
                  • Vl-duperhs-alist-fix
                  • Vl-duperhs-alist-equiv
              • Vl-lint-top
              • Sd-filter-problems
              • Vl-modulelist-add-svbad-warnings
              • Vl-module-add-svbad-warnings
              • Check-case
              • Vl-lint-extra-actions
              • Drop-lint-stubs
              • Vl-lint-print-warnings
              • Drop-user-submodules
              • Check-namespace
              • Vl-lintconfig-loadconfig
              • Vl-lint-design->svex-modalist-wrapper
              • Vl-delete-sd-problems-for-modnames-aux
              • Vl-collect-new-names-from-orignames
              • Vl-lint-print-all-warnings
              • Vl-design-remove-unnecessary-modules
              • Vl-delete-sd-problems-for-modnames
              • Vl-always-check-style
              • Vl-vardecllist-svbad-warnings
              • Vl-vardecl-svbad-warnings
              • Vl-reportcard-remove-suppressed
              • Vl-reportcard-keep-suppressed
              • Vl-alwayslist-check-style
              • Vl-remove-nameless-descriptions
              • Vl-lint-apply-quiet
              • Vl-warninglist-remove-suppressed
              • Vl-warninglist-keep-suppressed
              • Vl-print-eliminated-descs
              • Vl-module-alwaysstyle
              • Vl-jp-reportcard-aux
              • Vl-interface-alwaysstyle
              • Vl-design-alwaysstyle
              • Vl-jp-description-locations
              • Vl-jp-reportcard
              • Vl-pp-stringlist-lines
              • Vl-jp-design-locations
              • Vl-datatype-svbad-p
              • Unpacked-range-check
              • Sd-problem-major-p
              • Vl-alwaysstyle
            • Vl-server
            • Vl-gather
            • Vl-zip
            • Vl-main
            • Split-plusargs
            • Vl-shell
            • Vl-json
          • Mlib
          • Transforms
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-duperhs-alist

    Vl-duperhs-alist-p

    Recognizer for vl-duperhs-alist.

    Signature
    (vl-duperhs-alist-p x) → *

    Definitions and Theorems

    Function: vl-duperhs-alist-p

    (defun vl-duperhs-alist-p (x)
      (declare (xargs :guard t))
      (let ((__function__ 'vl-duperhs-alist-p))
        (declare (ignorable __function__))
        (if (atom x)
            t
          (and (consp (car x))
               (vl-expr-p (caar x))
               (vl-assignlist-p (cdar x))
               (vl-duperhs-alist-p (cdr x))))))

    Theorem: vl-duperhs-alist-p-of-revappend

    (defthm vl-duperhs-alist-p-of-revappend
      (equal (vl-duperhs-alist-p (revappend acl2::x acl2::y))
             (and (vl-duperhs-alist-p (list-fix acl2::x))
                  (vl-duperhs-alist-p acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-remove

    (defthm vl-duperhs-alist-p-of-remove
      (implies (vl-duperhs-alist-p acl2::x)
               (vl-duperhs-alist-p (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-last

    (defthm vl-duperhs-alist-p-of-last
      (implies (vl-duperhs-alist-p (double-rewrite acl2::x))
               (vl-duperhs-alist-p (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-nthcdr

    (defthm vl-duperhs-alist-p-of-nthcdr
      (implies (vl-duperhs-alist-p (double-rewrite acl2::x))
               (vl-duperhs-alist-p (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-butlast

    (defthm vl-duperhs-alist-p-of-butlast
      (implies (vl-duperhs-alist-p (double-rewrite acl2::x))
               (vl-duperhs-alist-p (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-update-nth

    (defthm vl-duperhs-alist-p-of-update-nth
     (implies
          (vl-duperhs-alist-p (double-rewrite acl2::x))
          (iff (vl-duperhs-alist-p (update-nth acl2::n acl2::y acl2::x))
               (and (and (consp acl2::y)
                         (vl-expr-p (car acl2::y))
                         (vl-assignlist-p (cdr acl2::y)))
                    (or (<= (nfix acl2::n) (len acl2::x))
                        (and (consp nil)
                             (vl-expr-p (car nil))
                             (vl-assignlist-p (cdr nil)))))))
     :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-repeat

    (defthm vl-duperhs-alist-p-of-repeat
      (iff (vl-duperhs-alist-p (repeat acl2::n acl2::x))
           (or (and (consp acl2::x)
                    (vl-expr-p (car acl2::x))
                    (vl-assignlist-p (cdr acl2::x)))
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-take

    (defthm vl-duperhs-alist-p-of-take
      (implies (vl-duperhs-alist-p (double-rewrite acl2::x))
               (iff (vl-duperhs-alist-p (take acl2::n acl2::x))
                    (or (and (consp nil)
                             (vl-expr-p (car nil))
                             (vl-assignlist-p (cdr nil)))
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-union-equal

    (defthm vl-duperhs-alist-p-of-union-equal
      (equal (vl-duperhs-alist-p (union-equal acl2::x acl2::y))
             (and (vl-duperhs-alist-p (list-fix acl2::x))
                  (vl-duperhs-alist-p (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-intersection-equal-2

    (defthm vl-duperhs-alist-p-of-intersection-equal-2
     (implies (vl-duperhs-alist-p (double-rewrite acl2::y))
              (vl-duperhs-alist-p (intersection-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-intersection-equal-1

    (defthm vl-duperhs-alist-p-of-intersection-equal-1
     (implies (vl-duperhs-alist-p (double-rewrite acl2::x))
              (vl-duperhs-alist-p (intersection-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-set-difference-equal

    (defthm vl-duperhs-alist-p-of-set-difference-equal
      (implies
           (vl-duperhs-alist-p acl2::x)
           (vl-duperhs-alist-p (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-set-equiv-congruence

    (defthm vl-duperhs-alist-p-set-equiv-congruence
      (implies (set-equiv acl2::x acl2::y)
               (equal (vl-duperhs-alist-p acl2::x)
                      (vl-duperhs-alist-p acl2::y)))
      :rule-classes :congruence)

    Theorem: vl-duperhs-alist-p-when-subsetp-equal

    (defthm vl-duperhs-alist-p-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (vl-duperhs-alist-p acl2::y))
                    (vl-duperhs-alist-p acl2::x))
           (implies (and (vl-duperhs-alist-p acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (vl-duperhs-alist-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-rcons

    (defthm vl-duperhs-alist-p-of-rcons
      (iff (vl-duperhs-alist-p (acl2::rcons acl2::a acl2::x))
           (and (and (consp acl2::a)
                     (vl-expr-p (car acl2::a))
                     (vl-assignlist-p (cdr acl2::a)))
                (vl-duperhs-alist-p (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-rev

    (defthm vl-duperhs-alist-p-of-rev
      (equal (vl-duperhs-alist-p (rev acl2::x))
             (vl-duperhs-alist-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-duplicated-members

    (defthm vl-duperhs-alist-p-of-duplicated-members
      (implies (vl-duperhs-alist-p acl2::x)
               (vl-duperhs-alist-p (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-difference

    (defthm vl-duperhs-alist-p-of-difference
      (implies (vl-duperhs-alist-p acl2::x)
               (vl-duperhs-alist-p (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-intersect-2

    (defthm vl-duperhs-alist-p-of-intersect-2
      (implies (vl-duperhs-alist-p acl2::y)
               (vl-duperhs-alist-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-intersect-1

    (defthm vl-duperhs-alist-p-of-intersect-1
      (implies (vl-duperhs-alist-p acl2::x)
               (vl-duperhs-alist-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-union

    (defthm vl-duperhs-alist-p-of-union
      (iff (vl-duperhs-alist-p (union acl2::x acl2::y))
           (and (vl-duperhs-alist-p (sfix acl2::x))
                (vl-duperhs-alist-p (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-mergesort

    (defthm vl-duperhs-alist-p-of-mergesort
      (iff (vl-duperhs-alist-p (mergesort acl2::x))
           (vl-duperhs-alist-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-delete

    (defthm vl-duperhs-alist-p-of-delete
      (implies (vl-duperhs-alist-p acl2::x)
               (vl-duperhs-alist-p (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-insert

    (defthm vl-duperhs-alist-p-of-insert
      (iff (vl-duperhs-alist-p (insert acl2::a acl2::x))
           (and (vl-duperhs-alist-p (sfix acl2::x))
                (and (consp acl2::a)
                     (vl-expr-p (car acl2::a))
                     (vl-assignlist-p (cdr acl2::a)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-sfix

    (defthm vl-duperhs-alist-p-of-sfix
      (iff (vl-duperhs-alist-p (sfix acl2::x))
           (or (vl-duperhs-alist-p acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-list-fix

    (defthm vl-duperhs-alist-p-of-list-fix
      (equal (vl-duperhs-alist-p (list-fix acl2::x))
             (vl-duperhs-alist-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-append

    (defthm vl-duperhs-alist-p-of-append
      (equal (vl-duperhs-alist-p (append acl2::a acl2::b))
             (and (vl-duperhs-alist-p acl2::a)
                  (vl-duperhs-alist-p acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-when-not-consp

    (defthm vl-duperhs-alist-p-when-not-consp
      (implies (not (consp acl2::x))
               (vl-duperhs-alist-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-cdr-when-vl-duperhs-alist-p

    (defthm vl-duperhs-alist-p-of-cdr-when-vl-duperhs-alist-p
      (implies (vl-duperhs-alist-p (double-rewrite acl2::x))
               (vl-duperhs-alist-p (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-cons

    (defthm vl-duperhs-alist-p-of-cons
      (equal (vl-duperhs-alist-p (cons acl2::a acl2::x))
             (and (and (consp acl2::a)
                       (vl-expr-p (car acl2::a))
                       (vl-assignlist-p (cdr acl2::a)))
                  (vl-duperhs-alist-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-make-fal

    (defthm vl-duperhs-alist-p-of-make-fal
      (implies (and (vl-duperhs-alist-p acl2::x)
                    (vl-duperhs-alist-p acl2::y))
               (vl-duperhs-alist-p (make-fal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-assignlist-p-of-cdr-when-member-equal-of-vl-duperhs-alist-p

    (defthm
         vl-assignlist-p-of-cdr-when-member-equal-of-vl-duperhs-alist-p
      (and (implies (and (vl-duperhs-alist-p acl2::x)
                         (member-equal acl2::a acl2::x))
                    (vl-assignlist-p (cdr acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (vl-duperhs-alist-p acl2::x))
                    (vl-assignlist-p (cdr acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: vl-expr-p-of-car-when-member-equal-of-vl-duperhs-alist-p

    (defthm vl-expr-p-of-car-when-member-equal-of-vl-duperhs-alist-p
      (and (implies (and (vl-duperhs-alist-p acl2::x)
                         (member-equal acl2::a acl2::x))
                    (vl-expr-p (car acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (vl-duperhs-alist-p acl2::x))
                    (vl-expr-p (car acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: consp-when-member-equal-of-vl-duperhs-alist-p

    (defthm consp-when-member-equal-of-vl-duperhs-alist-p
      (implies (and (vl-duperhs-alist-p acl2::x)
                    (member-equal acl2::a acl2::x))
               (consp acl2::a))
      :rule-classes
      ((:rewrite :backchain-limit-lst (0 0))
       (:rewrite :backchain-limit-lst (0 0)
                 :corollary (implies (if (member-equal acl2::a acl2::x)
                                         (vl-duperhs-alist-p acl2::x)
                                       'nil)
                                     (consp acl2::a)))))

    Theorem: vl-duperhs-alist-p-of-fast-alist-clean

    (defthm vl-duperhs-alist-p-of-fast-alist-clean
      (implies (vl-duperhs-alist-p acl2::x)
               (vl-duperhs-alist-p (fast-alist-clean acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-hons-shrink-alist

    (defthm vl-duperhs-alist-p-of-hons-shrink-alist
      (implies (and (vl-duperhs-alist-p acl2::x)
                    (vl-duperhs-alist-p acl2::y))
               (vl-duperhs-alist-p (hons-shrink-alist acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-duperhs-alist-p-of-hons-acons

    (defthm vl-duperhs-alist-p-of-hons-acons
      (equal (vl-duperhs-alist-p (hons-acons acl2::a acl2::n acl2::x))
             (and (vl-expr-p acl2::a)
                  (vl-assignlist-p acl2::n)
                  (vl-duperhs-alist-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-assignlist-p-of-cdr-of-hons-assoc-equal-when-vl-duperhs-alist-p

    (defthm
     vl-assignlist-p-of-cdr-of-hons-assoc-equal-when-vl-duperhs-alist-p
     (implies
         (vl-duperhs-alist-p acl2::x)
         (iff (vl-assignlist-p (cdr (hons-assoc-equal acl2::k acl2::x)))
              (or (hons-assoc-equal acl2::k acl2::x)
                  (vl-assignlist-p nil))))
     :rule-classes ((:rewrite)))

    Theorem: vl-assignlist-p-of-cdar-when-vl-duperhs-alist-p

    (defthm vl-assignlist-p-of-cdar-when-vl-duperhs-alist-p
      (implies (vl-duperhs-alist-p acl2::x)
               (iff (vl-assignlist-p (cdar acl2::x))
                    (or (consp acl2::x)
                        (vl-assignlist-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: vl-expr-p-of-caar-when-vl-duperhs-alist-p

    (defthm vl-expr-p-of-caar-when-vl-duperhs-alist-p
      (implies (vl-duperhs-alist-p acl2::x)
               (iff (vl-expr-p (caar acl2::x))
                    (or (consp acl2::x) (vl-expr-p nil))))
      :rule-classes ((:rewrite)))