• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • C
      • Proof-checker-array
      • Soft
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Ethereum
      • Leftist-trees
      • Java
      • Riscv
      • Taspi
      • Bitcoin
      • Zcash
        • Jubjub
          • Jubjub-abst
          • Jubjub-r-pointp
          • Jubjub-pointp
          • Jubjub-d
          • Jubjub-montgomery
          • Maybe-jubjub-pointp
          • Jubjub-point->u
          • Jubjub-q
          • Jubjub-point->v
          • Point-on-jubjub-p
          • Jubjub-rstar-pointp
          • Jubjub-add
          • Jubjub-r-properties
            • Not-jubjub-r-pointp-when-0-ordinate
            • Jubjub-r-doubling-injectivity
              • Point-0-m1
              • Not-jubjub-r-pointp-of-jubjub-r-point-with-neg-ordinate
              • Not-jubjub-r-pointp-when-lower-order
              • Jubjub-r-doubling-of-nonzero-is-nonzero
              • Jubjub-point->u-injective-on-jubjub-r-pointp
            • Jubjub-point-abscissa-is-not-1
            • Jubjub-mul
            • Jubjub-curve
            • Jubjub-a
            • Jubjub-neg
            • Jubjub-r
            • Jubjub-point-satisfies-curve-equation
            • Jubjub-h
            • Jubjub-mul-of-2
            • *jubjub-l*
          • Verify-zcash-r1cs
          • Lift-zcash-r1cs
          • Pedersen-hash
          • Zcash-gadgets
          • Bit/byte/integer-conversions
          • Constants
          • Blake2-hash
          • Randomness-beacon
        • Des
        • X86isa
        • Sha-2
        • Yul
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Axe
        • Poseidon
        • Where-do-i-place-my-book
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Jubjub-r-properties

    Jubjub-r-doubling-injectivity

    Injectivity of doubling in jubjub-r-pointp.

    This is proved by cases on whether the points are zero or not. The case in which they are both non-zero is the more complicated one:

    1. Assume 2P = 2Q.
    2. Since P and Q have order r, we have rP = O = rQ.
    3. Since r is odd, r = 2k+1 for some integer k.
    4. So from the equality at (2) we have k(2P)+P = (2k+1)P = (2k+1)Q = k(2Q)+Q.
    5. From the equality at (1), we also have k(2P) = k(2Q) and we can thus cancel them in the equality at (4), obtaining P = Q.

    Definitions and Theorems

    Theorem: jubjub-r-doubling-injectivity

    (defthm jubjub-r-doubling-injectivity
      (implies (and (ecurve::twisted-edwards-add-associativity)
                    (jubjub-r-pointp x)
                    (jubjub-r-pointp y))
               (equal (equal (jubjub-mul 2 x)
                             (jubjub-mul 2 y))
                      (equal x y))))