Fixing function for fundef-info structures.
(fundef-info-fix x) → new-x
Function:
(defun fundef-info-fix$inline (x) (declare (xargs :guard (fundef-infop x))) (mbe :logic (b* ((type (type-fix (cdr (std::da-nth 0 x)))) (uid (uid-fix (cdr (std::da-nth 1 x))))) (list (cons 'type type) (cons 'uid uid))) :exec x))
Theorem:
(defthm fundef-infop-of-fundef-info-fix (b* ((new-x (fundef-info-fix$inline x))) (fundef-infop new-x)) :rule-classes :rewrite)
Theorem:
(defthm fundef-info-fix-when-fundef-infop (implies (fundef-infop x) (equal (fundef-info-fix x) x)))
Function:
(defun fundef-info-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (fundef-infop acl2::x) (fundef-infop acl2::y)))) (equal (fundef-info-fix acl2::x) (fundef-info-fix acl2::y)))
Theorem:
(defthm fundef-info-equiv-is-an-equivalence (and (booleanp (fundef-info-equiv x y)) (fundef-info-equiv x x) (implies (fundef-info-equiv x y) (fundef-info-equiv y x)) (implies (and (fundef-info-equiv x y) (fundef-info-equiv y z)) (fundef-info-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fundef-info-equiv-implies-equal-fundef-info-fix-1 (implies (fundef-info-equiv acl2::x x-equiv) (equal (fundef-info-fix acl2::x) (fundef-info-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fundef-info-fix-under-fundef-info-equiv (fundef-info-equiv (fundef-info-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fundef-info-fix-1-forward-to-fundef-info-equiv (implies (equal (fundef-info-fix acl2::x) acl2::y) (fundef-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fundef-info-fix-2-forward-to-fundef-info-equiv (implies (equal acl2::x (fundef-info-fix acl2::y)) (fundef-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fundef-info-equiv-of-fundef-info-fix-1-forward (implies (fundef-info-equiv (fundef-info-fix acl2::x) acl2::y) (fundef-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fundef-info-equiv-of-fundef-info-fix-2-forward (implies (fundef-info-equiv acl2::x (fundef-info-fix acl2::y)) (fundef-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fundef-info-fix$inline-of-fundef-info-fix-x (equal (fundef-info-fix$inline (fundef-info-fix x)) (fundef-info-fix$inline x)))
Theorem:
(defthm fundef-info-fix$inline-fundef-info-equiv-congruence-on-x (implies (fundef-info-equiv x x-equiv) (equal (fundef-info-fix$inline x) (fundef-info-fix$inline x-equiv))) :rule-classes :congruence)