• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • C
        • Soft
        • Bv
        • Imp-language
        • Ethereum
        • Event-macros
        • Java
        • Riscv
        • Bitcoin
        • Zcash
        • Yul
        • ACL2-programming-language
        • Prime-fields
        • Json
        • Syntheto
        • File-io-light
        • Cryptography
        • Number-theory
        • Axe
        • Lists-light
        • Builtins
          • Builtin-defaxioms/defthms
            • Builtin-defthms
            • Builtin-defaxioms
            • Builtin-defaxioms/defthms-by-rule-classes
              • Builtin-defaxioms/defthms-without-rule-classes
              • Builtin-defaxioms/defthms-of-class-type-prescription
              • Builtin-defaxioms/defthms-of-class-rewrite
              • Builtin-defaxioms/defthms-of-class-forward-chaining
              • Builtin-defaxioms/defthms-of-class-definition
              • Builtin-defaxioms/defthms-of-class-congruence
                • Builtin-defaxioms/defthms-of-class-linear
                • Builtin-defaxioms/defthms-of-class-compound-recognizer
                • Builtin-defaxioms/defthms-of-class-tau-system
                • Builtin-defaxioms/defthms-of-class-equivalence
                • Builtin-defaxioms/defthms-of-class-elim
                • Builtin-defaxioms/defthms-of-class-well-founded-relation
                • Builtin-defaxioms/defthms-of-class-type-set-inverter
                • Builtin-defaxioms/defthms-of-class-rewrite-quoted-constant
                • Builtin-defaxioms/defthms-of-class-refinement
                • Builtin-defaxioms/defthms-of-class-generalize
                • Builtin-defaxioms/defthms-of-class-clause-processor
                • Builtin-defaxioms/defthms-of-class-built-in-clause
                • Builtin-defaxioms/defthms-of-class-meta
                • Builtin-defaxioms/defthms-of-class-induction
              • Builtin-defaxioms/defthms-by-types/functions
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Builtin-defaxioms/defthms-by-rule-classes

    Builtin-defaxioms/defthms-of-class-congruence

    Built-in axioms and theorems of the :congruence rule class.

    Theorem: fn-equal-implies-equal-do$-4

    (defthm fn-equal-implies-equal-do$-4
      (implies (fn-equal finally-fn finally-fn-equiv)
               (equal (do$ measure-fn
                           alist do-fn finally-fn values dolia)
                      (do$ measure-fn alist
                           do-fn finally-fn-equiv values dolia)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-do$-3

    (defthm fn-equal-implies-equal-do$-3
      (implies (fn-equal do-fn do-fn-equiv)
               (equal (do$ measure-fn
                           alist do-fn finally-fn values dolia)
                      (do$ measure-fn alist
                           do-fn-equiv finally-fn values dolia)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-do$-1

    (defthm fn-equal-implies-equal-do$-1
      (implies (fn-equal measure-fn measure-fn-equiv)
               (equal (do$ measure-fn
                           alist do-fn finally-fn values dolia)
                      (do$ measure-fn-equiv
                           alist do-fn finally-fn values dolia)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-append$+-1

    (defthm fn-equal-implies-equal-append$+-1
      (implies (fn-equal fn fn-equiv)
               (equal (append$+ fn globals lst)
                      (append$+ fn-equiv globals lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-append$+-ac-1

    (defthm fn-equal-implies-equal-append$+-ac-1
      (implies (fn-equal fn fn-equiv)
               (equal (append$+-ac fn globals lst ac)
                      (append$+-ac fn-equiv globals lst ac)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-append$-1

    (defthm fn-equal-implies-equal-append$-1
      (implies (fn-equal fn fn-equiv)
               (equal (append$ fn lst)
                      (append$ fn-equiv lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-append$-ac-1

    (defthm fn-equal-implies-equal-append$-ac-1
      (implies (fn-equal fn fn-equiv)
               (equal (append$-ac fn lst ac)
                      (append$-ac fn-equiv lst ac)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-collect$+-1

    (defthm fn-equal-implies-equal-collect$+-1
      (implies (fn-equal fn fn-equiv)
               (equal (collect$+ fn globals lst)
                      (collect$+ fn-equiv globals lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-collect$+-ac-1

    (defthm fn-equal-implies-equal-collect$+-ac-1
      (implies (fn-equal fn fn-equiv)
               (equal (collect$+-ac fn globals lst ac)
                      (collect$+-ac fn-equiv globals lst ac)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-collect$-1

    (defthm fn-equal-implies-equal-collect$-1
      (implies (fn-equal fn fn-equiv)
               (equal (collect$ fn lst)
                      (collect$ fn-equiv lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-collect$-ac-1

    (defthm fn-equal-implies-equal-collect$-ac-1
      (implies (fn-equal fn fn-equiv)
               (equal (collect$-ac fn lst ac)
                      (collect$-ac fn-equiv lst ac)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-thereis$+-1

    (defthm fn-equal-implies-equal-thereis$+-1
      (implies (fn-equal fn fn-equiv)
               (equal (thereis$+ fn globals lst)
                      (thereis$+ fn-equiv globals lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-thereis$-1

    (defthm fn-equal-implies-equal-thereis$-1
      (implies (fn-equal fn fn-equiv)
               (equal (thereis$ fn lst)
                      (thereis$ fn-equiv lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-always$+-1

    (defthm fn-equal-implies-equal-always$+-1
      (implies (fn-equal fn fn-equiv)
               (equal (always$+ fn globals lst)
                      (always$+ fn-equiv globals lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-always$-1

    (defthm fn-equal-implies-equal-always$-1
      (implies (fn-equal fn fn-equiv)
               (equal (always$ fn lst)
                      (always$ fn-equiv lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-sum$+-1

    (defthm fn-equal-implies-equal-sum$+-1
      (implies (fn-equal fn fn-equiv)
               (equal (sum$+ fn globals lst)
                      (sum$+ fn-equiv globals lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-sum$+-ac-1

    (defthm fn-equal-implies-equal-sum$+-ac-1
      (implies (fn-equal fn fn-equiv)
               (equal (sum$+-ac fn globals lst ac)
                      (sum$+-ac fn-equiv globals lst ac)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-sum$-1

    (defthm fn-equal-implies-equal-sum$-1
      (implies (fn-equal fn fn-equiv)
               (equal (sum$ fn lst)
                      (sum$ fn-equiv lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-sum$-ac-1

    (defthm fn-equal-implies-equal-sum$-ac-1
      (implies (fn-equal fn fn-equiv)
               (equal (sum$-ac fn lst ac)
                      (sum$-ac fn-equiv lst ac)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-when$+-1

    (defthm fn-equal-implies-equal-when$+-1
      (implies (fn-equal fn fn-equiv)
               (equal (when$+ fn globals lst)
                      (when$+ fn-equiv globals lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-when$+-ac-1

    (defthm fn-equal-implies-equal-when$+-ac-1
      (implies (fn-equal fn fn-equiv)
               (equal (when$+-ac fn globals lst ac)
                      (when$+-ac fn-equiv globals lst ac)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-when$-1

    (defthm fn-equal-implies-equal-when$-1
      (implies (fn-equal fn fn-equiv)
               (equal (when$ fn lst)
                      (when$ fn-equiv lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-when$-ac-1

    (defthm fn-equal-implies-equal-when$-ac-1
      (implies (fn-equal fn fn-equiv)
               (equal (when$-ac fn lst ac)
                      (when$-ac fn-equiv lst ac)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-until$+-1

    (defthm fn-equal-implies-equal-until$+-1
      (implies (fn-equal fn fn-equiv)
               (equal (until$+ fn globals lst)
                      (until$+ fn-equiv globals lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-until$+-ac-1

    (defthm fn-equal-implies-equal-until$+-ac-1
      (implies (fn-equal fn fn-equiv)
               (equal (until$+-ac fn globals lst ac)
                      (until$+-ac fn-equiv globals lst ac)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-until$-1

    (defthm fn-equal-implies-equal-until$-1
      (implies (fn-equal fn fn-equiv)
               (equal (until$ fn lst)
                      (until$ fn-equiv lst)))
      :rule-classes (:congruence))

    Theorem: fn-equal-implies-equal-until$-ac-1

    (defthm fn-equal-implies-equal-until$-ac-1
      (implies (fn-equal fn fn-equiv)
               (equal (until$-ac fn lst ac)
                      (until$-ac fn-equiv lst ac)))
      :rule-classes (:congruence))

    Theorem: iff-implies-equal-not

    (defthm iff-implies-equal-not
      (implies (iff x x-equiv)
               (equal (not x) (not x-equiv)))
      :rule-classes (:congruence))

    Theorem: iff-implies-equal-implies-2

    (defthm iff-implies-equal-implies-2
      (implies (iff y y-equiv)
               (equal (implies x y)
                      (implies x y-equiv)))
      :rule-classes (:congruence))

    Theorem: iff-implies-equal-implies-1

    (defthm iff-implies-equal-implies-1
      (implies (iff x x-equiv)
               (equal (implies x y)
                      (implies x-equiv y)))
      :rule-classes (:congruence))