Alternative definitions of predicates for integer values.
These provide alternative definitions of predicates like sintp in terms of valuep and value-kind.
Theorem:
(defthm scharp-alt-def (equal (scharp x) (and (valuep x) (equal (value-kind x) :schar))))
Theorem:
(defthm ucharp-alt-def (equal (ucharp x) (and (valuep x) (equal (value-kind x) :uchar))))
Theorem:
(defthm sshortp-alt-def (equal (sshortp x) (and (valuep x) (equal (value-kind x) :sshort))))
Theorem:
(defthm ushortp-alt-def (equal (ushortp x) (and (valuep x) (equal (value-kind x) :ushort))))
Theorem:
(defthm sintp-alt-def (equal (sintp x) (and (valuep x) (equal (value-kind x) :sint))))
Theorem:
(defthm uintp-alt-def (equal (uintp x) (and (valuep x) (equal (value-kind x) :uint))))
Theorem:
(defthm slongp-alt-def (equal (slongp x) (and (valuep x) (equal (value-kind x) :slong))))
Theorem:
(defthm ulongp-alt-def (equal (ulongp x) (and (valuep x) (equal (value-kind x) :ulong))))
Theorem:
(defthm sllongp-alt-def (equal (sllongp x) (and (valuep x) (equal (value-kind x) :sllong))))
Theorem:
(defthm ullongp-alt-def (equal (ullongp x) (and (valuep x) (equal (value-kind x) :ullong))))