(designor-list-rename c$::designor-list subst) → fty::result
Theorem:
(defthm designor-list-rename-type-prescription (true-listp (designor-list-rename c$::designor-list subst)) :rule-classes :type-prescription)
Theorem:
(defthm designor-list-rename-when-atom (implies (atom c$::designor-list) (equal (designor-list-rename c$::designor-list subst) nil)))
Theorem:
(defthm designor-list-rename-of-cons (equal (designor-list-rename (cons c$::designor c$::designor-list) subst) (cons (designor-rename c$::designor subst) (designor-list-rename c$::designor-list subst))))
Theorem:
(defthm designor-list-rename-of-append (equal (designor-list-rename (append acl2::x acl2::y) subst) (append (designor-list-rename acl2::x subst) (designor-list-rename acl2::y subst))))
Theorem:
(defthm consp-of-designor-list-rename (equal (consp (designor-list-rename c$::designor-list subst)) (consp c$::designor-list)))
Theorem:
(defthm len-of-designor-list-rename (equal (len (designor-list-rename c$::designor-list subst)) (len c$::designor-list)))
Theorem:
(defthm nth-of-designor-list-rename (equal (nth acl2::n (designor-list-rename c$::designor-list subst)) (if (< (nfix acl2::n) (len c$::designor-list)) (designor-rename (nth acl2::n c$::designor-list) subst) nil)))
Theorem:
(defthm designor-list-rename-of-revappend (equal (designor-list-rename (revappend acl2::x acl2::y) subst) (revappend (designor-list-rename acl2::x subst) (designor-list-rename acl2::y subst))))
Theorem:
(defthm designor-list-rename-of-reverse (equal (designor-list-rename (reverse c$::designor-list) subst) (reverse (designor-list-rename c$::designor-list subst))))