(enumer-list-rename c$::enumer-list subst) → fty::result
Theorem:
(defthm enumer-list-rename-type-prescription (true-listp (enumer-list-rename c$::enumer-list subst)) :rule-classes :type-prescription)
Theorem:
(defthm enumer-list-rename-when-atom (implies (atom c$::enumer-list) (equal (enumer-list-rename c$::enumer-list subst) nil)))
Theorem:
(defthm enumer-list-rename-of-cons (equal (enumer-list-rename (cons enumer c$::enumer-list) subst) (cons (enumer-rename enumer subst) (enumer-list-rename c$::enumer-list subst))))
Theorem:
(defthm enumer-list-rename-of-append (equal (enumer-list-rename (append acl2::x acl2::y) subst) (append (enumer-list-rename acl2::x subst) (enumer-list-rename acl2::y subst))))
Theorem:
(defthm consp-of-enumer-list-rename (equal (consp (enumer-list-rename c$::enumer-list subst)) (consp c$::enumer-list)))
Theorem:
(defthm len-of-enumer-list-rename (equal (len (enumer-list-rename c$::enumer-list subst)) (len c$::enumer-list)))
Theorem:
(defthm nth-of-enumer-list-rename (equal (nth acl2::n (enumer-list-rename c$::enumer-list subst)) (if (< (nfix acl2::n) (len c$::enumer-list)) (enumer-rename (nth acl2::n c$::enumer-list) subst) nil)))
Theorem:
(defthm enumer-list-rename-of-revappend (equal (enumer-list-rename (revappend acl2::x acl2::y) subst) (revappend (enumer-list-rename acl2::x subst) (enumer-list-rename acl2::y subst))))
Theorem:
(defthm enumer-list-rename-of-reverse (equal (enumer-list-rename (reverse c$::enumer-list) subst) (reverse (enumer-list-rename c$::enumer-list subst))))