(ident-list-rename c$::ident-list subst) → fty::result
Function:
(defun ident-list-rename (c$::ident-list subst) (declare (xargs :guard (and (ident-listp c$::ident-list) (ident-ident-alistp subst)))) (let ((__function__ 'ident-list-rename)) (declare (ignorable __function__)) (if (endp c$::ident-list) nil (cons (ident-rename (car c$::ident-list) subst) (ident-list-rename (cdr c$::ident-list) subst)))))
Theorem:
(defthm ident-listp-of-ident-list-rename (b* ((fty::result (ident-list-rename c$::ident-list subst))) (ident-listp fty::result)) :rule-classes :rewrite)
Theorem:
(defthm ident-list-rename-type-prescription (true-listp (ident-list-rename c$::ident-list subst)) :rule-classes :type-prescription)
Theorem:
(defthm ident-list-rename-when-atom (implies (atom c$::ident-list) (equal (ident-list-rename c$::ident-list subst) nil)))
Theorem:
(defthm ident-list-rename-of-cons (equal (ident-list-rename (cons ident c$::ident-list) subst) (cons (ident-rename ident subst) (ident-list-rename c$::ident-list subst))))
Theorem:
(defthm ident-list-rename-of-append (equal (ident-list-rename (append acl2::x acl2::y) subst) (append (ident-list-rename acl2::x subst) (ident-list-rename acl2::y subst))))
Theorem:
(defthm consp-of-ident-list-rename (equal (consp (ident-list-rename c$::ident-list subst)) (consp c$::ident-list)))
Theorem:
(defthm len-of-ident-list-rename (equal (len (ident-list-rename c$::ident-list subst)) (len c$::ident-list)))
Theorem:
(defthm nth-of-ident-list-rename (equal (nth acl2::n (ident-list-rename c$::ident-list subst)) (if (< (nfix acl2::n) (len c$::ident-list)) (ident-rename (nth acl2::n c$::ident-list) subst) nil)))
Theorem:
(defthm ident-list-rename-of-revappend (equal (ident-list-rename (revappend acl2::x acl2::y) subst) (revappend (ident-list-rename acl2::x subst) (ident-list-rename acl2::y subst))))
Theorem:
(defthm ident-list-rename-of-reverse (equal (ident-list-rename (reverse c$::ident-list) subst) (reverse (ident-list-rename c$::ident-list subst))))
Theorem:
(defthm ident-list-rename-of-ident-list-fix-ident-list (equal (ident-list-rename (c$::ident-list-fix c$::ident-list) subst) (ident-list-rename c$::ident-list subst)))
Theorem:
(defthm ident-list-rename-ident-list-equiv-congruence-on-ident-list (implies (c$::ident-list-equiv c$::ident-list ident-list-equiv) (equal (ident-list-rename c$::ident-list subst) (ident-list-rename ident-list-equiv subst))) :rule-classes :congruence)
Theorem:
(defthm ident-list-rename-of-ident-ident-alist-fix-subst (equal (ident-list-rename c$::ident-list (ident-ident-alist-fix subst)) (ident-list-rename c$::ident-list subst)))
Theorem:
(defthm ident-list-rename-ident-ident-alist-equiv-congruence-on-subst (implies (ident-ident-alist-equiv subst subst-equiv) (equal (ident-list-rename c$::ident-list subst) (ident-list-rename c$::ident-list subst-equiv))) :rule-classes :congruence)