• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • C
          • Syntax-for-tools
          • Atc
          • Transformation-tools
            • Simpadd0
            • Proof-generation
            • Split-gso
            • Wrap-fn
            • Constant-propagation
            • Specialize
            • Split-fn
            • Split-fn-when
            • Split-all-gso
            • Copy-fn
            • Variables-in-computation-states
            • Rename
              • Abstract-syntax-rename
              • Ident-ident-subst
              • Code-ensemble-rename
              • Ident-ident-alist
                • Ident-ident-alistp
                • Ident-ident-alist-fix
                • Ident-ident-alist-equiv
              • Utilities
              • Proof-generation-theorems
              • Input-processing
            • Language
            • Representation
            • Insertion-sort
            • Pack
          • Soft
          • Bv
          • Imp-language
          • Ethereum
          • Event-macros
          • Java
          • Riscv
          • Bitcoin
          • Zcash
          • Yul
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Axe
          • Lists-light
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Ident-ident-alist

    Ident-ident-alist-equiv

    Basic equivalence relation for ident-ident-alist structures.

    Definitions and Theorems

    Function: ident-ident-alist-equiv$inline

    (defun ident-ident-alist-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (ident-ident-alistp acl2::x)
                                  (ident-ident-alistp acl2::y))))
      (equal (ident-ident-alist-fix acl2::x)
             (ident-ident-alist-fix acl2::y)))

    Theorem: ident-ident-alist-equiv-is-an-equivalence

    (defthm ident-ident-alist-equiv-is-an-equivalence
      (and (booleanp (ident-ident-alist-equiv x y))
           (ident-ident-alist-equiv x x)
           (implies (ident-ident-alist-equiv x y)
                    (ident-ident-alist-equiv y x))
           (implies (and (ident-ident-alist-equiv x y)
                         (ident-ident-alist-equiv y z))
                    (ident-ident-alist-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: ident-ident-alist-equiv-implies-equal-ident-ident-alist-fix-1

    (defthm
          ident-ident-alist-equiv-implies-equal-ident-ident-alist-fix-1
      (implies (ident-ident-alist-equiv acl2::x x-equiv)
               (equal (ident-ident-alist-fix acl2::x)
                      (ident-ident-alist-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: ident-ident-alist-fix-under-ident-ident-alist-equiv

    (defthm ident-ident-alist-fix-under-ident-ident-alist-equiv
      (ident-ident-alist-equiv (ident-ident-alist-fix acl2::x)
                               acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-ident-ident-alist-fix-1-forward-to-ident-ident-alist-equiv

    (defthm
     equal-of-ident-ident-alist-fix-1-forward-to-ident-ident-alist-equiv
     (implies (equal (ident-ident-alist-fix acl2::x)
                     acl2::y)
              (ident-ident-alist-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: equal-of-ident-ident-alist-fix-2-forward-to-ident-ident-alist-equiv

    (defthm
     equal-of-ident-ident-alist-fix-2-forward-to-ident-ident-alist-equiv
     (implies (equal acl2::x (ident-ident-alist-fix acl2::y))
              (ident-ident-alist-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: ident-ident-alist-equiv-of-ident-ident-alist-fix-1-forward

    (defthm ident-ident-alist-equiv-of-ident-ident-alist-fix-1-forward
      (implies (ident-ident-alist-equiv (ident-ident-alist-fix acl2::x)
                                        acl2::y)
               (ident-ident-alist-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: ident-ident-alist-equiv-of-ident-ident-alist-fix-2-forward

    (defthm ident-ident-alist-equiv-of-ident-ident-alist-fix-2-forward
     (implies
       (ident-ident-alist-equiv acl2::x (ident-ident-alist-fix acl2::y))
       (ident-ident-alist-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)