• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • C
        • Soft
        • Bv
        • Imp-language
        • Ethereum
        • Event-macros
        • Java
          • Atj
          • Aij
          • Language
            • Syntax
              • Grammar
              • Unicode-escapes
              • Unicode-input-char
              • Escape-sequence
              • Identifiers
                • Ascii-identifier-part-p
                • Identifier
                • Tidentifier
                • Umidentifier
                • Ascii-identifier-ignore-p
                • Ascii-identifier-start-p
                • Nonascii-identifier-part-p
                • Nonascii-identifier-ignore-p
                • Nonascii-identifier-start-p
                • Identifier-part-listp
                • Identifier-start-p
                • Identifier-part-p
                • Identifier-ignore-p
                • Tidentifierp
                • No-identifier-ignore-p
                • Umidentifier-fix
                • Tidentifier-fix
                • Identifierp
                • Identifier-fix
                • Umidentifierp
                • Identifier-list
                  • Identifier-list-fix
                  • Identifier-list-equiv
                  • Identifier-listp
                    • Identifier-listp-basics
                • Primitive-types
                • Reference-types
                • Unicode-characters
                • Keywords
                • Integer-literals
                • String-literals
                • Octal-digits
                • Hexadecimal-digits
                • Decimal-digits
                • Binary-digits
                • Character-literals
                • Null-literal
                • Floating-point-literals
                • Boolean-literals
                • Package-names
                • Literals
              • Semantics
          • Riscv
          • Bitcoin
          • Zcash
          • Yul
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Axe
          • Lists-light
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Identifier-listp

    Identifier-listp-basics

    Basic theorems about identifier-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: identifier-listp-of-cons

    (defthm identifier-listp-of-cons
      (equal (identifier-listp (cons acl2::a acl2::x))
             (and (identifierp acl2::a)
                  (identifier-listp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-cdr-when-identifier-listp

    (defthm identifier-listp-of-cdr-when-identifier-listp
      (implies (identifier-listp (double-rewrite acl2::x))
               (identifier-listp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-when-not-consp

    (defthm identifier-listp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (identifier-listp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifierp-of-car-when-identifier-listp

    (defthm identifierp-of-car-when-identifier-listp
      (implies (identifier-listp acl2::x)
               (iff (identifierp (car acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-identifier-listp-compound-recognizer

    (defthm true-listp-when-identifier-listp-compound-recognizer
      (implies (identifier-listp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: identifier-listp-of-list-fix

    (defthm identifier-listp-of-list-fix
      (implies (identifier-listp acl2::x)
               (identifier-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-sfix

    (defthm identifier-listp-of-sfix
      (iff (identifier-listp (sfix acl2::x))
           (or (identifier-listp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-insert

    (defthm identifier-listp-of-insert
      (iff (identifier-listp (insert acl2::a acl2::x))
           (and (identifier-listp (sfix acl2::x))
                (identifierp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-delete

    (defthm identifier-listp-of-delete
      (implies (identifier-listp acl2::x)
               (identifier-listp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-mergesort

    (defthm identifier-listp-of-mergesort
      (iff (identifier-listp (mergesort acl2::x))
           (identifier-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-union

    (defthm identifier-listp-of-union
      (iff (identifier-listp (union acl2::x acl2::y))
           (and (identifier-listp (sfix acl2::x))
                (identifier-listp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-intersect-1

    (defthm identifier-listp-of-intersect-1
      (implies (identifier-listp acl2::x)
               (identifier-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-intersect-2

    (defthm identifier-listp-of-intersect-2
      (implies (identifier-listp acl2::y)
               (identifier-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-difference

    (defthm identifier-listp-of-difference
      (implies (identifier-listp acl2::x)
               (identifier-listp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-duplicated-members

    (defthm identifier-listp-of-duplicated-members
      (implies (identifier-listp acl2::x)
               (identifier-listp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-rev

    (defthm identifier-listp-of-rev
      (equal (identifier-listp (rev acl2::x))
             (identifier-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-append

    (defthm identifier-listp-of-append
      (equal (identifier-listp (append acl2::a acl2::b))
             (and (identifier-listp (list-fix acl2::a))
                  (identifier-listp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-rcons

    (defthm identifier-listp-of-rcons
      (iff (identifier-listp (rcons acl2::a acl2::x))
           (and (identifierp acl2::a)
                (identifier-listp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: identifierp-when-member-equal-of-identifier-listp

    (defthm identifierp-when-member-equal-of-identifier-listp
      (and (implies (and (member-equal acl2::a acl2::x)
                         (identifier-listp acl2::x))
                    (identifierp acl2::a))
           (implies (and (identifier-listp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (identifierp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-when-subsetp-equal

    (defthm identifier-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (identifier-listp acl2::y))
                    (equal (identifier-listp acl2::x)
                           (true-listp acl2::x)))
           (implies (and (identifier-listp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (identifier-listp acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-set-difference-equal

    (defthm identifier-listp-of-set-difference-equal
     (implies (identifier-listp acl2::x)
              (identifier-listp (set-difference-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-intersection-equal-1

    (defthm identifier-listp-of-intersection-equal-1
      (implies (identifier-listp (double-rewrite acl2::x))
               (identifier-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-intersection-equal-2

    (defthm identifier-listp-of-intersection-equal-2
      (implies (identifier-listp (double-rewrite acl2::y))
               (identifier-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-union-equal

    (defthm identifier-listp-of-union-equal
      (equal (identifier-listp (union-equal acl2::x acl2::y))
             (and (identifier-listp (list-fix acl2::x))
                  (identifier-listp (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-take

    (defthm identifier-listp-of-take
      (implies (identifier-listp (double-rewrite acl2::x))
               (iff (identifier-listp (take acl2::n acl2::x))
                    (or (identifierp nil)
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-repeat

    (defthm identifier-listp-of-repeat
      (iff (identifier-listp (repeat acl2::n acl2::x))
           (or (identifierp acl2::x) (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: identifierp-of-nth-when-identifier-listp

    (defthm identifierp-of-nth-when-identifier-listp
      (implies (identifier-listp acl2::x)
               (iff (identifierp (nth acl2::n acl2::x))
                    (< (nfix acl2::n) (len acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-update-nth

    (defthm identifier-listp-of-update-nth
      (implies
           (identifier-listp (double-rewrite acl2::x))
           (iff (identifier-listp (update-nth acl2::n acl2::y acl2::x))
                (and (identifierp acl2::y)
                     (or (<= (nfix acl2::n) (len acl2::x))
                         (identifierp nil)))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-butlast

    (defthm identifier-listp-of-butlast
      (implies (identifier-listp (double-rewrite acl2::x))
               (identifier-listp (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-nthcdr

    (defthm identifier-listp-of-nthcdr
      (implies (identifier-listp (double-rewrite acl2::x))
               (identifier-listp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-last

    (defthm identifier-listp-of-last
      (implies (identifier-listp (double-rewrite acl2::x))
               (identifier-listp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-remove

    (defthm identifier-listp-of-remove
      (implies (identifier-listp acl2::x)
               (identifier-listp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-revappend

    (defthm identifier-listp-of-revappend
      (equal (identifier-listp (revappend acl2::x acl2::y))
             (and (identifier-listp (list-fix acl2::x))
                  (identifier-listp acl2::y)))
      :rule-classes ((:rewrite)))