• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
      • X86isa
        • Program-execution
        • Sdm-instruction-set-summary
        • Tlb
        • Running-linux
        • Introduction
        • Asmtest
        • X86isa-build-instructions
        • Publications
        • Contributors
        • Machine
        • Implemented-opcodes
        • To-do
        • Proof-utilities
        • Peripherals
        • Model-validation
        • Modelcalls
        • Concrete-simulation-examples
        • Utils
          • Structures
            • Rflagsbits
            • Cr4bits
            • Xcr0bits
            • Cr0bits
            • Prefixes
            • Ia32_eferbits
            • Evex-byte1
            • Cr3bits
            • Evex-byte3
            • Vex3-byte2
            • Vex3-byte1
            • Vex2-byte1
            • Evex-prefixes
            • Evex-byte2
            • Vex-prefixes
            • Sib
            • Modr/m-structures
            • Vex-prefixes-layout-structures
            • Sib-structures
            • Legacy-prefixes-layout-structure
            • Evex-prefixes-layout-structures
            • Cr8bits
            • Opcode-maps-structures
              • Opcode
              • Inst
              • Op/en-p
              • Operands
              • Inst-list-p
                • Inst-list-p-basics
                • Operand-type-p
                • Strict-opcode-p
                • Opcode-extension-group-p
                • Superscripts-p
                • Maybe-operands-p
                • Exception-desc-p
                • Count-avx-pfx-cases
                • Mnemonic-p
                • Maybe-3bits-p
                • Op-pfx-p
                • Maybe-vex-p
                • Maybe-evex-p
                • Fn-desc-p
                • Op-mode-p
                • Rex-p
                • Mod-p
                • Avx-pfx-well-formed-p
                • Any-present-in
                • Superscripts-fix
                • Strict-opcode-fix
                • Operand-type-fix
                • Opcode-extension-group-fix
                • Maybe-operands-fix
                • Maybe-evex-fix
                • Maybe-3bits-fix
                • Keyword-list-fix
                • Exception-desc-fix
                • Rex-fix
                • Op-pfx-fix
                • Op-mode-fix
                • Mod-fix
                • Mnemonic-fix
                • Maybe-vex-fix
                • Fn-desc-fix
                • Vex-p
                • Evex-p
              • Segmentation-bitstructs
              • 8bits
              • 2bits
              • 4bits
              • 16bits
              • Paging-bitstructs
              • 3bits
              • 11bits
              • 40bits
              • 5bits
              • 32bits
              • 19bits
              • 10bits
              • 7bits
              • 64bits
              • 54bits
              • 45bits
              • 36bits
              • 31bits
              • 24bits
              • 22bits
              • 17bits
              • 13bits
              • 12bits
              • 6bits
              • Vex->x
              • Vex->b
              • Vex-prefixes-map-p
              • Vex-prefixes-byte0-p
              • Vex->w
              • Vex->vvvv
              • Vex->r
              • Fp-bitstructs
              • Cr4bits-debug
              • Vex->pp
              • Vex->l
              • Rflagsbits-debug
              • Evex->v-prime
              • Evex->z
              • Evex->w
              • Evex->vvvv
              • Evex->vl/rc
              • Evex->pp
              • Evex->aaa
              • Xcr0bits-debug
              • Vex3-byte1-equiv-under-mask
              • Vex3-byte2-equiv-under-mask
              • Vex2-byte1-equiv-under-mask
              • Vex-prefixes-equiv-under-mask
              • Rflagsbits-equiv-under-mask
              • Ia32_eferbits-equiv-under-mask
              • Evex-prefixes-equiv-under-mask
              • Evex-byte3-equiv-under-mask
              • Evex-byte2-equiv-under-mask
              • Evex-byte1-equiv-under-mask
              • Cr0bits-debug
              • Xcr0bits-equiv-under-mask
              • Sib-equiv-under-mask
              • Prefixes-equiv-under-mask
              • Cr8bits-equiv-under-mask
              • Cr4bits-equiv-under-mask
              • Cr3bits-equiv-under-mask
              • Cr0bits-equiv-under-mask
              • Vex3-byte1-debug
              • Prefixes-debug
              • Ia32_eferbits-debug
              • Evex-byte1-debug
              • Vex3-byte2-debug
              • Vex2-byte1-debug
              • Vex-prefixes-debug
              • Evex-prefixes-debug
              • Evex-byte3-debug
              • Evex-byte2-debug
              • Cr3bits-debug
              • Sib-debug
              • Cr8bits-debug
            • Utilities
          • Debugging-code-proofs
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Inst-list-p

    Inst-list-p-basics

    Basic theorems about inst-list-p, generated by deflist.

    Definitions and Theorems

    Theorem: inst-list-p-of-cons

    (defthm inst-list-p-of-cons
      (equal (inst-list-p (cons a x))
             (and (inst-p a) (inst-list-p x)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-cdr-when-inst-list-p

    (defthm inst-list-p-of-cdr-when-inst-list-p
      (implies (inst-list-p (double-rewrite x))
               (inst-list-p (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-when-not-consp

    (defthm inst-list-p-when-not-consp
      (implies (not (consp x))
               (equal (inst-list-p x) (not x)))
      :rule-classes ((:rewrite)))

    Theorem: inst-p-of-car-when-inst-list-p

    (defthm inst-p-of-car-when-inst-list-p
      (implies (inst-list-p x)
               (iff (inst-p (car x))
                    (or (consp x) (inst-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-inst-list-p-compound-recognizer

    (defthm true-listp-when-inst-list-p-compound-recognizer
      (implies (inst-list-p x) (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: inst-list-p-of-list-fix

    (defthm inst-list-p-of-list-fix
      (implies (inst-list-p x)
               (inst-list-p (acl2::list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-sfix

    (defthm inst-list-p-of-sfix
      (iff (inst-list-p (set::sfix x))
           (or (inst-list-p x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-insert

    (defthm inst-list-p-of-insert
      (iff (inst-list-p (set::insert a x))
           (and (inst-list-p (set::sfix x))
                (inst-p a)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-delete

    (defthm inst-list-p-of-delete
      (implies (inst-list-p x)
               (inst-list-p (set::delete k x)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-mergesort

    (defthm inst-list-p-of-mergesort
      (iff (inst-list-p (set::mergesort x))
           (inst-list-p (acl2::list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-union

    (defthm inst-list-p-of-union
      (iff (inst-list-p (set::union x y))
           (and (inst-list-p (set::sfix x))
                (inst-list-p (set::sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-intersect-1

    (defthm inst-list-p-of-intersect-1
      (implies (inst-list-p x)
               (inst-list-p (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-intersect-2

    (defthm inst-list-p-of-intersect-2
      (implies (inst-list-p y)
               (inst-list-p (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-difference

    (defthm inst-list-p-of-difference
      (implies (inst-list-p x)
               (inst-list-p (set::difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-duplicated-members

    (defthm inst-list-p-of-duplicated-members
      (implies (inst-list-p x)
               (inst-list-p (acl2::duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-rev

    (defthm inst-list-p-of-rev
      (equal (inst-list-p (acl2::rev x))
             (inst-list-p (acl2::list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-append

    (defthm inst-list-p-of-append
      (equal (inst-list-p (append a b))
             (and (inst-list-p (acl2::list-fix a))
                  (inst-list-p b)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-rcons

    (defthm inst-list-p-of-rcons
      (iff (inst-list-p (acl2::rcons a x))
           (and (inst-p a)
                (inst-list-p (acl2::list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: inst-p-when-member-equal-of-inst-list-p

    (defthm inst-p-when-member-equal-of-inst-list-p
      (and (implies (and (member-equal a x) (inst-list-p x))
                    (inst-p a))
           (implies (and (inst-list-p x) (member-equal a x))
                    (inst-p a)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-when-subsetp-equal

    (defthm inst-list-p-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (inst-list-p y))
                    (equal (inst-list-p x) (true-listp x)))
           (implies (and (inst-list-p y)
                         (subsetp-equal x y))
                    (equal (inst-list-p x) (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-set-difference-equal

    (defthm inst-list-p-of-set-difference-equal
      (implies (inst-list-p x)
               (inst-list-p (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-intersection-equal-1

    (defthm inst-list-p-of-intersection-equal-1
      (implies (inst-list-p (double-rewrite x))
               (inst-list-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-intersection-equal-2

    (defthm inst-list-p-of-intersection-equal-2
      (implies (inst-list-p (double-rewrite y))
               (inst-list-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-union-equal

    (defthm inst-list-p-of-union-equal
      (equal (inst-list-p (union-equal x y))
             (and (inst-list-p (acl2::list-fix x))
                  (inst-list-p (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-take

    (defthm inst-list-p-of-take
      (implies (inst-list-p (double-rewrite x))
               (iff (inst-list-p (take n x))
                    (or (inst-p nil)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-repeat

    (defthm inst-list-p-of-repeat
      (iff (inst-list-p (acl2::repeat n x))
           (or (inst-p x) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: inst-p-of-nth-when-inst-list-p

    (defthm inst-p-of-nth-when-inst-list-p
      (implies (and (inst-list-p x)
                    (< (nfix n) (len x)))
               (inst-p (nth n x)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-update-nth

    (defthm inst-list-p-of-update-nth
      (implies (inst-list-p (double-rewrite x))
               (iff (inst-list-p (update-nth n y x))
                    (and (inst-p y)
                         (or (<= (nfix n) (len x))
                             (inst-p nil)))))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-butlast

    (defthm inst-list-p-of-butlast
      (implies (inst-list-p (double-rewrite x))
               (inst-list-p (butlast x n)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-nthcdr

    (defthm inst-list-p-of-nthcdr
      (implies (inst-list-p (double-rewrite x))
               (inst-list-p (nthcdr n x)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-last

    (defthm inst-list-p-of-last
      (implies (inst-list-p (double-rewrite x))
               (inst-list-p (last x)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-remove

    (defthm inst-list-p-of-remove
      (implies (inst-list-p x)
               (inst-list-p (remove a x)))
      :rule-classes ((:rewrite)))

    Theorem: inst-list-p-of-revappend

    (defthm inst-list-p-of-revappend
      (equal (inst-list-p (revappend x y))
             (and (inst-list-p (acl2::list-fix x))
                  (inst-list-p y)))
      :rule-classes ((:rewrite)))