Fixing function for uid-option structures.
(uid-option-fix x) → new-x
Function:
(defun uid-option-fix$inline (x) (declare (xargs :guard (uid-optionp x))) (mbe :logic (cond ((not x) nil) (t (b* ((fty::val (uid-fix x))) fty::val))) :exec x))
Theorem:
(defthm uid-optionp-of-uid-option-fix (b* ((new-x (uid-option-fix$inline x))) (uid-optionp new-x)) :rule-classes :rewrite)
Theorem:
(defthm uid-option-fix-when-uid-optionp (implies (uid-optionp x) (equal (uid-option-fix x) x)))
Function:
(defun uid-option-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (uid-optionp acl2::x) (uid-optionp acl2::y)))) (equal (uid-option-fix acl2::x) (uid-option-fix acl2::y)))
Theorem:
(defthm uid-option-equiv-is-an-equivalence (and (booleanp (uid-option-equiv x y)) (uid-option-equiv x x) (implies (uid-option-equiv x y) (uid-option-equiv y x)) (implies (and (uid-option-equiv x y) (uid-option-equiv y z)) (uid-option-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm uid-option-equiv-implies-equal-uid-option-fix-1 (implies (uid-option-equiv acl2::x x-equiv) (equal (uid-option-fix acl2::x) (uid-option-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm uid-option-fix-under-uid-option-equiv (uid-option-equiv (uid-option-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-uid-option-fix-1-forward-to-uid-option-equiv (implies (equal (uid-option-fix acl2::x) acl2::y) (uid-option-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-uid-option-fix-2-forward-to-uid-option-equiv (implies (equal acl2::x (uid-option-fix acl2::y)) (uid-option-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm uid-option-equiv-of-uid-option-fix-1-forward (implies (uid-option-equiv (uid-option-fix acl2::x) acl2::y) (uid-option-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm uid-option-equiv-of-uid-option-fix-2-forward (implies (uid-option-equiv acl2::x (uid-option-fix acl2::y)) (uid-option-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm uid-option-fix$inline-of-uid-option-fix-x (equal (uid-option-fix$inline (uid-option-fix x)) (uid-option-fix$inline x)))
Theorem:
(defthm uid-option-fix$inline-uid-option-equiv-congruence-on-x (implies (uid-option-equiv x x-equiv) (equal (uid-option-fix$inline x) (uid-option-fix$inline x-equiv))) :rule-classes :congruence)