Get the absdeclor field from a amb?-declor/absdeclor-absdeclor.
(amb?-declor/absdeclor-absdeclor->absdeclor x) → absdeclor
This is an ordinary field accessor created by fty::defprod.
Function:
(defun amb?-declor/absdeclor-absdeclor->absdeclor$inline (x) (declare (xargs :guard (amb?-declor/absdeclor-p x))) (declare (xargs :guard (equal (amb?-declor/absdeclor-kind x) :absdeclor))) (mbe :logic (b* ((x (and (equal (amb?-declor/absdeclor-kind x) :absdeclor) x))) (absdeclor-fix (cdr x))) :exec (cdr x)))
Theorem:
(defthm absdeclorp-of-amb?-declor/absdeclor-absdeclor->absdeclor (b* ((absdeclor (amb?-declor/absdeclor-absdeclor->absdeclor$inline x))) (absdeclorp absdeclor)) :rule-classes :rewrite)
Theorem:
(defthm amb?-declor/absdeclor-absdeclor->absdeclor$inline-of-amb?-declor/absdeclor-fix-x (equal (amb?-declor/absdeclor-absdeclor->absdeclor$inline (amb?-declor/absdeclor-fix x)) (amb?-declor/absdeclor-absdeclor->absdeclor$inline x)))
Theorem:
(defthm amb?-declor/absdeclor-absdeclor->absdeclor$inline-amb?-declor/absdeclor-equiv-congruence-on-x (implies (amb?-declor/absdeclor-equiv x x-equiv) (equal (amb?-declor/absdeclor-absdeclor->absdeclor$inline x) (amb?-declor/absdeclor-absdeclor->absdeclor$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm amb?-declor/absdeclor-absdeclor->absdeclor-when-wrong-kind (implies (not (equal (amb?-declor/absdeclor-kind x) :absdeclor)) (equal (amb?-declor/absdeclor-absdeclor->absdeclor x) (absdeclor-fix nil))))