Fixing function for fsuffix structures.
Function:
(defun fsuffix-fix$inline (f) (declare (xargs :guard (fsuffixp f))) (mbe :logic (case (fsuffix-kind f) (:locase-f (cons :locase-f nil)) (:upcase-f (cons :upcase-f nil)) (:locase-l (cons :locase-l nil)) (:upcase-l (cons :upcase-l nil)) (:locase-f16 (b* ((x (bool-fix (cdr f)))) (cons :locase-f16 x))) (:locase-f32 (b* ((x (bool-fix (cdr f)))) (cons :locase-f32 x))) (:locase-f64 (b* ((x (bool-fix (cdr f)))) (cons :locase-f64 x))) (:locase-f128 (b* ((x (bool-fix (cdr f)))) (cons :locase-f128 x))) (:upcase-f16 (b* ((x (bool-fix (cdr f)))) (cons :upcase-f16 x))) (:upcase-f32 (b* ((x (bool-fix (cdr f)))) (cons :upcase-f32 x))) (:upcase-f64 (b* ((x (bool-fix (cdr f)))) (cons :upcase-f64 x))) (:upcase-f128 (b* ((x (bool-fix (cdr f)))) (cons :upcase-f128 x)))) :exec f))
Theorem:
(defthm fsuffixp-of-fsuffix-fix (b* ((new-x (fsuffix-fix$inline f))) (fsuffixp new-x)) :rule-classes :rewrite)
Theorem:
(defthm fsuffix-fix-when-fsuffixp (implies (fsuffixp f) (equal (fsuffix-fix f) f)))
Function:
(defun fsuffix-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (fsuffixp acl2::x) (fsuffixp acl2::y)))) (equal (fsuffix-fix acl2::x) (fsuffix-fix acl2::y)))
Theorem:
(defthm fsuffix-equiv-is-an-equivalence (and (booleanp (fsuffix-equiv x y)) (fsuffix-equiv x x) (implies (fsuffix-equiv x y) (fsuffix-equiv y x)) (implies (and (fsuffix-equiv x y) (fsuffix-equiv y z)) (fsuffix-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fsuffix-equiv-implies-equal-fsuffix-fix-1 (implies (fsuffix-equiv acl2::x x-equiv) (equal (fsuffix-fix acl2::x) (fsuffix-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fsuffix-fix-under-fsuffix-equiv (fsuffix-equiv (fsuffix-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fsuffix-fix-1-forward-to-fsuffix-equiv (implies (equal (fsuffix-fix acl2::x) acl2::y) (fsuffix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fsuffix-fix-2-forward-to-fsuffix-equiv (implies (equal acl2::x (fsuffix-fix acl2::y)) (fsuffix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fsuffix-equiv-of-fsuffix-fix-1-forward (implies (fsuffix-equiv (fsuffix-fix acl2::x) acl2::y) (fsuffix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fsuffix-equiv-of-fsuffix-fix-2-forward (implies (fsuffix-equiv acl2::x (fsuffix-fix acl2::y)) (fsuffix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fsuffix-kind$inline-of-fsuffix-fix-f (equal (fsuffix-kind$inline (fsuffix-fix f)) (fsuffix-kind$inline f)))
Theorem:
(defthm fsuffix-kind$inline-fsuffix-equiv-congruence-on-f (implies (fsuffix-equiv f f-equiv) (equal (fsuffix-kind$inline f) (fsuffix-kind$inline f-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-fsuffix-fix (consp (fsuffix-fix f)) :rule-classes :type-prescription)
Theorem:
(defthm fsuffix-fix$inline-of-fsuffix-fix-f (equal (fsuffix-fix$inline (fsuffix-fix f)) (fsuffix-fix$inline f)))
Theorem:
(defthm fsuffix-fix$inline-fsuffix-equiv-congruence-on-f (implies (fsuffix-equiv f f-equiv) (equal (fsuffix-fix$inline f) (fsuffix-fix$inline f-equiv))) :rule-classes :congruence)