Basic equivalence relation for sinteger-bit-role structures.
Function:
(defun sinteger-bit-role-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (sinteger-bit-rolep acl2::x) (sinteger-bit-rolep acl2::y)))) (equal (sinteger-bit-role-fix acl2::x) (sinteger-bit-role-fix acl2::y)))
Theorem:
(defthm sinteger-bit-role-equiv-is-an-equivalence (and (booleanp (sinteger-bit-role-equiv x y)) (sinteger-bit-role-equiv x x) (implies (sinteger-bit-role-equiv x y) (sinteger-bit-role-equiv y x)) (implies (and (sinteger-bit-role-equiv x y) (sinteger-bit-role-equiv y z)) (sinteger-bit-role-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm sinteger-bit-role-equiv-implies-equal-sinteger-bit-role-fix-1 (implies (sinteger-bit-role-equiv acl2::x x-equiv) (equal (sinteger-bit-role-fix acl2::x) (sinteger-bit-role-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm sinteger-bit-role-fix-under-sinteger-bit-role-equiv (sinteger-bit-role-equiv (sinteger-bit-role-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-sinteger-bit-role-fix-1-forward-to-sinteger-bit-role-equiv (implies (equal (sinteger-bit-role-fix acl2::x) acl2::y) (sinteger-bit-role-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-sinteger-bit-role-fix-2-forward-to-sinteger-bit-role-equiv (implies (equal acl2::x (sinteger-bit-role-fix acl2::y)) (sinteger-bit-role-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm sinteger-bit-role-equiv-of-sinteger-bit-role-fix-1-forward (implies (sinteger-bit-role-equiv (sinteger-bit-role-fix acl2::x) acl2::y) (sinteger-bit-role-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm sinteger-bit-role-equiv-of-sinteger-bit-role-fix-2-forward (implies (sinteger-bit-role-equiv acl2::x (sinteger-bit-role-fix acl2::y)) (sinteger-bit-role-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)