Fixing function for sinteger-bit-role structures.
(sinteger-bit-role-fix x) → new-x
Function:
(defun sinteger-bit-role-fix$inline (x) (declare (xargs :guard (sinteger-bit-rolep x))) (mbe :logic (case (sinteger-bit-role-kind x) (:sign (cons :sign (list))) (:value (b* ((exp (nfix (std::da-nth 0 (cdr x))))) (cons :value (list exp)))) (:padding (cons :padding (list)))) :exec x))
Theorem:
(defthm sinteger-bit-rolep-of-sinteger-bit-role-fix (b* ((new-x (sinteger-bit-role-fix$inline x))) (sinteger-bit-rolep new-x)) :rule-classes :rewrite)
Theorem:
(defthm sinteger-bit-role-fix-when-sinteger-bit-rolep (implies (sinteger-bit-rolep x) (equal (sinteger-bit-role-fix x) x)))
Function:
(defun sinteger-bit-role-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (sinteger-bit-rolep acl2::x) (sinteger-bit-rolep acl2::y)))) (equal (sinteger-bit-role-fix acl2::x) (sinteger-bit-role-fix acl2::y)))
Theorem:
(defthm sinteger-bit-role-equiv-is-an-equivalence (and (booleanp (sinteger-bit-role-equiv x y)) (sinteger-bit-role-equiv x x) (implies (sinteger-bit-role-equiv x y) (sinteger-bit-role-equiv y x)) (implies (and (sinteger-bit-role-equiv x y) (sinteger-bit-role-equiv y z)) (sinteger-bit-role-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm sinteger-bit-role-equiv-implies-equal-sinteger-bit-role-fix-1 (implies (sinteger-bit-role-equiv acl2::x x-equiv) (equal (sinteger-bit-role-fix acl2::x) (sinteger-bit-role-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm sinteger-bit-role-fix-under-sinteger-bit-role-equiv (sinteger-bit-role-equiv (sinteger-bit-role-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-sinteger-bit-role-fix-1-forward-to-sinteger-bit-role-equiv (implies (equal (sinteger-bit-role-fix acl2::x) acl2::y) (sinteger-bit-role-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-sinteger-bit-role-fix-2-forward-to-sinteger-bit-role-equiv (implies (equal acl2::x (sinteger-bit-role-fix acl2::y)) (sinteger-bit-role-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm sinteger-bit-role-equiv-of-sinteger-bit-role-fix-1-forward (implies (sinteger-bit-role-equiv (sinteger-bit-role-fix acl2::x) acl2::y) (sinteger-bit-role-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm sinteger-bit-role-equiv-of-sinteger-bit-role-fix-2-forward (implies (sinteger-bit-role-equiv acl2::x (sinteger-bit-role-fix acl2::y)) (sinteger-bit-role-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm sinteger-bit-role-kind$inline-of-sinteger-bit-role-fix-x (equal (sinteger-bit-role-kind$inline (sinteger-bit-role-fix x)) (sinteger-bit-role-kind$inline x)))
Theorem:
(defthm sinteger-bit-role-kind$inline-sinteger-bit-role-equiv-congruence-on-x (implies (sinteger-bit-role-equiv x x-equiv) (equal (sinteger-bit-role-kind$inline x) (sinteger-bit-role-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-sinteger-bit-role-fix (consp (sinteger-bit-role-fix x)) :rule-classes :type-prescription)
Theorem:
(defthm sinteger-bit-role-fix$inline-of-sinteger-bit-role-fix-x (equal (sinteger-bit-role-fix$inline (sinteger-bit-role-fix x)) (sinteger-bit-role-fix$inline x)))
Theorem:
(defthm sinteger-bit-role-fix$inline-sinteger-bit-role-equiv-congruence-on-x (implies (sinteger-bit-role-equiv x x-equiv) (equal (sinteger-bit-role-fix$inline x) (sinteger-bit-role-fix$inline x-equiv))) :rule-classes :congruence)