Fixing function for uinteger-bit-role structures.
(uinteger-bit-role-fix x) → new-x
Function:
(defun uinteger-bit-role-fix$inline (x) (declare (xargs :guard (uinteger-bit-rolep x))) (mbe :logic (case (uinteger-bit-role-kind x) (:value (b* ((exp (nfix (std::da-nth 0 (cdr x))))) (cons :value (list exp)))) (:padding (cons :padding (list)))) :exec x))
Theorem:
(defthm uinteger-bit-rolep-of-uinteger-bit-role-fix (b* ((new-x (uinteger-bit-role-fix$inline x))) (uinteger-bit-rolep new-x)) :rule-classes :rewrite)
Theorem:
(defthm uinteger-bit-role-fix-when-uinteger-bit-rolep (implies (uinteger-bit-rolep x) (equal (uinteger-bit-role-fix x) x)))
Function:
(defun uinteger-bit-role-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (uinteger-bit-rolep acl2::x) (uinteger-bit-rolep acl2::y)))) (equal (uinteger-bit-role-fix acl2::x) (uinteger-bit-role-fix acl2::y)))
Theorem:
(defthm uinteger-bit-role-equiv-is-an-equivalence (and (booleanp (uinteger-bit-role-equiv x y)) (uinteger-bit-role-equiv x x) (implies (uinteger-bit-role-equiv x y) (uinteger-bit-role-equiv y x)) (implies (and (uinteger-bit-role-equiv x y) (uinteger-bit-role-equiv y z)) (uinteger-bit-role-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm uinteger-bit-role-equiv-implies-equal-uinteger-bit-role-fix-1 (implies (uinteger-bit-role-equiv acl2::x x-equiv) (equal (uinteger-bit-role-fix acl2::x) (uinteger-bit-role-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm uinteger-bit-role-fix-under-uinteger-bit-role-equiv (uinteger-bit-role-equiv (uinteger-bit-role-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-uinteger-bit-role-fix-1-forward-to-uinteger-bit-role-equiv (implies (equal (uinteger-bit-role-fix acl2::x) acl2::y) (uinteger-bit-role-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-uinteger-bit-role-fix-2-forward-to-uinteger-bit-role-equiv (implies (equal acl2::x (uinteger-bit-role-fix acl2::y)) (uinteger-bit-role-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm uinteger-bit-role-equiv-of-uinteger-bit-role-fix-1-forward (implies (uinteger-bit-role-equiv (uinteger-bit-role-fix acl2::x) acl2::y) (uinteger-bit-role-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm uinteger-bit-role-equiv-of-uinteger-bit-role-fix-2-forward (implies (uinteger-bit-role-equiv acl2::x (uinteger-bit-role-fix acl2::y)) (uinteger-bit-role-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm uinteger-bit-role-kind$inline-of-uinteger-bit-role-fix-x (equal (uinteger-bit-role-kind$inline (uinteger-bit-role-fix x)) (uinteger-bit-role-kind$inline x)))
Theorem:
(defthm uinteger-bit-role-kind$inline-uinteger-bit-role-equiv-congruence-on-x (implies (uinteger-bit-role-equiv x x-equiv) (equal (uinteger-bit-role-kind$inline x) (uinteger-bit-role-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-uinteger-bit-role-fix (consp (uinteger-bit-role-fix x)) :rule-classes :type-prescription)
Theorem:
(defthm uinteger-bit-role-fix$inline-of-uinteger-bit-role-fix-x (equal (uinteger-bit-role-fix$inline (uinteger-bit-role-fix x)) (uinteger-bit-role-fix$inline x)))
Theorem:
(defthm uinteger-bit-role-fix$inline-uinteger-bit-role-equiv-congruence-on-x (implies (uinteger-bit-role-equiv x x-equiv) (equal (uinteger-bit-role-fix$inline x) (uinteger-bit-role-fix$inline x-equiv))) :rule-classes :congruence)