• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • C
        • Soft
        • Bv
        • Imp-language
        • Ethereum
        • Event-macros
        • Java
        • Riscv
        • Bitcoin
        • Zcash
        • Yul
          • Transformations
          • Language
            • Abstract-syntax
              • Escape
              • Swcase-list->value-list
              • Hex-digit-list->chars
              • Fundef-list->name-list
              • Literal
              • Path
              • Hex-string-rest-element
              • Plain-string
              • String-element
              • Hex-string-content-option
              • Hex-string-content
              • Identifier
              • Funcall-option
              • Expression-option
              • Statement-option
              • Literal-option
              • Identifier-option
              • Hex-string
              • Hex-quad
              • Hex-digit
              • Hex-pair
              • Data-value
              • Data-item
              • Statements-to-fundefs
              • String-element-list-result
              • Identifier-identifier-map-result
              • Swcase-result
              • String-element-result
              • Statement-result
              • Literal-result
              • Identifier-set-result
              • Identifier-result
              • Identifier-list-result
              • Fundef-result
              • Funcall-result
              • Expression-result
              • Escape-result
              • Path-result
              • Block-result
              • Objects
              • Statements/blocks/cases/fundefs
              • Identifier-list
              • Identifier-set
              • Identifier-identifier-map
              • Identifier-identifier-alist
              • Hex-string-rest-element-list
              • String-element-list
                • String-element-list-fix
                  • String-element-list-equiv
                  • String-element-listp
                • Path-list
                • Hex-digit-list
                • Literal-list
                • Fundef-list
                • Expressions/funcalls
                • Abstract-syntax-induction-schemas
              • Dynamic-semantics
              • Concrete-syntax
              • Static-soundness
              • Static-semantics
              • Errors
            • Yul-json
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Axe
          • Lists-light
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • String-element-list

    String-element-list-fix

    (string-element-list-fix x) is a usual ACL2::fty list fixing function.

    Signature
    (string-element-list-fix x) → fty::newx
    Arguments
    x — Guard (string-element-listp x).
    Returns
    fty::newx — Type (string-element-listp fty::newx).

    In the logic, we apply string-element-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: string-element-list-fix$inline

    (defun string-element-list-fix$inline (x)
      (declare (xargs :guard (string-element-listp x)))
      (let ((__function__ 'string-element-list-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 nil
               (cons (string-element-fix (car x))
                     (string-element-list-fix (cdr x))))
             :exec x)))

    Theorem: string-element-listp-of-string-element-list-fix

    (defthm string-element-listp-of-string-element-list-fix
      (b* ((fty::newx (string-element-list-fix$inline x)))
        (string-element-listp fty::newx))
      :rule-classes :rewrite)

    Theorem: string-element-list-fix-when-string-element-listp

    (defthm string-element-list-fix-when-string-element-listp
      (implies (string-element-listp x)
               (equal (string-element-list-fix x) x)))

    Function: string-element-list-equiv$inline

    (defun string-element-list-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (string-element-listp acl2::x)
                                  (string-element-listp acl2::y))))
      (equal (string-element-list-fix acl2::x)
             (string-element-list-fix acl2::y)))

    Theorem: string-element-list-equiv-is-an-equivalence

    (defthm string-element-list-equiv-is-an-equivalence
      (and (booleanp (string-element-list-equiv x y))
           (string-element-list-equiv x x)
           (implies (string-element-list-equiv x y)
                    (string-element-list-equiv y x))
           (implies (and (string-element-list-equiv x y)
                         (string-element-list-equiv y z))
                    (string-element-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: string-element-list-equiv-implies-equal-string-element-list-fix-1

    (defthm
      string-element-list-equiv-implies-equal-string-element-list-fix-1
      (implies (string-element-list-equiv acl2::x x-equiv)
               (equal (string-element-list-fix acl2::x)
                      (string-element-list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: string-element-list-fix-under-string-element-list-equiv

    (defthm string-element-list-fix-under-string-element-list-equiv
      (string-element-list-equiv (string-element-list-fix acl2::x)
                                 acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-string-element-list-fix-1-forward-to-string-element-list-equiv

    (defthm
     equal-of-string-element-list-fix-1-forward-to-string-element-list-equiv
     (implies (equal (string-element-list-fix acl2::x)
                     acl2::y)
              (string-element-list-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: equal-of-string-element-list-fix-2-forward-to-string-element-list-equiv

    (defthm
     equal-of-string-element-list-fix-2-forward-to-string-element-list-equiv
     (implies (equal acl2::x
                     (string-element-list-fix acl2::y))
              (string-element-list-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: string-element-list-equiv-of-string-element-list-fix-1-forward

    (defthm
         string-element-list-equiv-of-string-element-list-fix-1-forward
      (implies
           (string-element-list-equiv (string-element-list-fix acl2::x)
                                      acl2::y)
           (string-element-list-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: string-element-list-equiv-of-string-element-list-fix-2-forward

    (defthm
         string-element-list-equiv-of-string-element-list-fix-2-forward
      (implies
           (string-element-list-equiv acl2::x
                                      (string-element-list-fix acl2::y))
           (string-element-list-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: car-of-string-element-list-fix-x-under-string-element-equiv

    (defthm car-of-string-element-list-fix-x-under-string-element-equiv
      (string-element-equiv (car (string-element-list-fix acl2::x))
                            (car acl2::x)))

    Theorem: car-string-element-list-equiv-congruence-on-x-under-string-element-equiv

    (defthm
     car-string-element-list-equiv-congruence-on-x-under-string-element-equiv
     (implies (string-element-list-equiv acl2::x x-equiv)
              (string-element-equiv (car acl2::x)
                                    (car x-equiv)))
     :rule-classes :congruence)

    Theorem: cdr-of-string-element-list-fix-x-under-string-element-list-equiv

    (defthm
       cdr-of-string-element-list-fix-x-under-string-element-list-equiv
      (string-element-list-equiv (cdr (string-element-list-fix acl2::x))
                                 (cdr acl2::x)))

    Theorem: cdr-string-element-list-equiv-congruence-on-x-under-string-element-list-equiv

    (defthm
     cdr-string-element-list-equiv-congruence-on-x-under-string-element-list-equiv
     (implies (string-element-list-equiv acl2::x x-equiv)
              (string-element-list-equiv (cdr acl2::x)
                                         (cdr x-equiv)))
     :rule-classes :congruence)

    Theorem: cons-of-string-element-fix-x-under-string-element-list-equiv

    (defthm cons-of-string-element-fix-x-under-string-element-list-equiv
      (string-element-list-equiv (cons (string-element-fix acl2::x)
                                       acl2::y)
                                 (cons acl2::x acl2::y)))

    Theorem: cons-string-element-equiv-congruence-on-x-under-string-element-list-equiv

    (defthm
     cons-string-element-equiv-congruence-on-x-under-string-element-list-equiv
     (implies (string-element-equiv acl2::x x-equiv)
              (string-element-list-equiv (cons acl2::x acl2::y)
                                         (cons x-equiv acl2::y)))
     :rule-classes :congruence)

    Theorem: cons-of-string-element-list-fix-y-under-string-element-list-equiv

    (defthm
      cons-of-string-element-list-fix-y-under-string-element-list-equiv
     (string-element-list-equiv (cons acl2::x
                                      (string-element-list-fix acl2::y))
                                (cons acl2::x acl2::y)))

    Theorem: cons-string-element-list-equiv-congruence-on-y-under-string-element-list-equiv

    (defthm
     cons-string-element-list-equiv-congruence-on-y-under-string-element-list-equiv
     (implies (string-element-list-equiv acl2::y y-equiv)
              (string-element-list-equiv (cons acl2::x acl2::y)
                                         (cons acl2::x y-equiv)))
     :rule-classes :congruence)

    Theorem: consp-of-string-element-list-fix

    (defthm consp-of-string-element-list-fix
      (equal (consp (string-element-list-fix acl2::x))
             (consp acl2::x)))

    Theorem: string-element-list-fix-under-iff

    (defthm string-element-list-fix-under-iff
      (iff (string-element-list-fix acl2::x)
           (consp acl2::x)))

    Theorem: string-element-list-fix-of-cons

    (defthm string-element-list-fix-of-cons
      (equal (string-element-list-fix (cons a x))
             (cons (string-element-fix a)
                   (string-element-list-fix x))))

    Theorem: len-of-string-element-list-fix

    (defthm len-of-string-element-list-fix
      (equal (len (string-element-list-fix acl2::x))
             (len acl2::x)))

    Theorem: string-element-list-fix-of-append

    (defthm string-element-list-fix-of-append
      (equal (string-element-list-fix (append std::a std::b))
             (append (string-element-list-fix std::a)
                     (string-element-list-fix std::b))))

    Theorem: string-element-list-fix-of-repeat

    (defthm string-element-list-fix-of-repeat
      (equal (string-element-list-fix (repeat acl2::n acl2::x))
             (repeat acl2::n (string-element-fix acl2::x))))

    Theorem: list-equiv-refines-string-element-list-equiv

    (defthm list-equiv-refines-string-element-list-equiv
      (implies (list-equiv acl2::x acl2::y)
               (string-element-list-equiv acl2::x acl2::y))
      :rule-classes :refinement)

    Theorem: nth-of-string-element-list-fix

    (defthm nth-of-string-element-list-fix
      (equal (nth acl2::n
                  (string-element-list-fix acl2::x))
             (if (< (nfix acl2::n) (len acl2::x))
                 (string-element-fix (nth acl2::n acl2::x))
               nil)))

    Theorem: string-element-list-equiv-implies-string-element-list-equiv-append-1

    (defthm
     string-element-list-equiv-implies-string-element-list-equiv-append-1
     (implies (string-element-list-equiv acl2::x fty::x-equiv)
              (string-element-list-equiv (append acl2::x acl2::y)
                                         (append fty::x-equiv acl2::y)))
     :rule-classes (:congruence))

    Theorem: string-element-list-equiv-implies-string-element-list-equiv-append-2

    (defthm
     string-element-list-equiv-implies-string-element-list-equiv-append-2
     (implies (string-element-list-equiv acl2::y fty::y-equiv)
              (string-element-list-equiv (append acl2::x acl2::y)
                                         (append acl2::x fty::y-equiv)))
     :rule-classes (:congruence))

    Theorem: string-element-list-equiv-implies-string-element-list-equiv-nthcdr-2

    (defthm
     string-element-list-equiv-implies-string-element-list-equiv-nthcdr-2
     (implies (string-element-list-equiv acl2::l l-equiv)
              (string-element-list-equiv (nthcdr acl2::n acl2::l)
                                         (nthcdr acl2::n l-equiv)))
     :rule-classes (:congruence))

    Theorem: string-element-list-equiv-implies-string-element-list-equiv-take-2

    (defthm
     string-element-list-equiv-implies-string-element-list-equiv-take-2
     (implies (string-element-list-equiv acl2::l l-equiv)
              (string-element-list-equiv (take acl2::n acl2::l)
                                         (take acl2::n l-equiv)))
     :rule-classes (:congruence))