• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
          • Sparseint-impl
            • Sparseint$-binary-bitop-width
            • Sparseint$-plus-width
            • Sparseint$-binary-bitop-offset
            • Sparseint$-binary-bitop-int-width
            • Sparseint$-plus-int-width
            • Sum-with-cin
            • Sparseint$-plus-offset
            • Sparseint$-binary-bitop-int
            • Sparseint$-finalize-concat
            • Sparseint$-plus-int
            • Sparseint$-binary-bittest-width
            • Sparseint$-binary-bittest-int-width
            • Sparseint$-trailing-0-count-width
              • Sparseint$-height
              • Int-to-sparseint$-rec
              • Carry-out
              • Sparseint$-compare-width
              • Sparseint$-binary-bittest-offset
              • Sparseint$-equal-width
              • Sparseint$-binary-bittest-int
              • Sparseint$-compare-int-width
              • Sparseint$-bitcount-width
              • Sparseint$-unary-bittest-width
              • Sparseint$-rightshift-rec
              • Sparseint$-equal-int-width
              • Sparseint$-trailing-0-count-rec
              • Sparseint$-unary-bitop
              • Sparseint$-concatenate
              • Sparseint$-length-width-rec
              • Sparseint$-sign-ext
              • Sparseint$-binary-bitop
              • Binary-bitop
              • Sparseint$-compare-offset
              • Sparseint$-unary-bittest-offset
              • Sparseint$-equal-offset
              • Sparseint$-truncate
              • Sparseint$-mergeable-leaves-p
              • Carry-out-bit
              • Sparseint$-truncate-height
              • Sparseint$-compare-int
              • Sparseint$-binary-bittest
              • Sparseint$-equal-int
              • Sparseint$-rightshift
              • Sparseint$-leaves-mergeable-p
              • Sparseint$-plus
              • Unary-bitop
              • Sparseint$-bitcount-rec
              • Within-1
              • Sparseint$
              • Binary-bitop-cofactor2
              • Binary-bitop-cofactor1
              • Sparseint$-compare
              • Sparseint$-unary-bittest
              • Sparseint$-height-correct-exec
              • Sparseint$-equal
              • Sparseint$-bitnot
              • Sparseint$-unary-minus
              • Sparseint$-bit
              • Int-to-sparseint$
              • Binary-bittest
              • Sparseint$-length-rec
              • Sparseint$-val
              • Binary-bitop-swap
              • Compare
              • Sparseint$-real-height
              • Sparseint$-height-correctp
              • Sparseint$-length
            • Sparseint-p
            • Sparseint-binary-bittest
            • Sparseint-concatenate
            • Sparseint-binary-bitop
            • Sparseint-bitite
            • Sparseint-fix
            • Sparseint$-binary-minus
            • Sparseint-trailing-1-count-from
            • Sparseint-trailing-0-count-from
            • Sparseint-equal
            • Sparseint-test-bitorc2
            • Sparseint-test-bitorc1
            • Sparseint-test-bitnand
            • Sparseint-test-bitandc2
            • Sparseint-test-bitandc1
            • Sparseint-test-bitand
            • Sparseint-rightshift
            • Sparseint-bitcount-from
            • Sparseint-test-bitxor
            • Sparseint-test-bitor
            • Sparseint-test-bitnor
            • Sparseint-test-biteqv
            • Sparseint-compare
            • Sparseint-binary-minus
            • Sparseint-sign-ext
            • Sparseint-plus
            • Sparseint-bitandc2
            • Sparseint-bitandc1
            • Sparseint-bitand
            • Sparseint$-leaf-bitlimit
            • Sparseint-bitxor
            • Sparseint-bitorc2
            • Sparseint-bitorc1
            • Sparseint-bitor
            • Sparseint-bitnor
            • Sparseint-bitnand
            • Sparseint-biteqv
            • Sparseint-ash
            • Sparseint-<
            • Sparseint-bit
            • Sparseint-trailing-1-count
            • Sparseint-trailing-0-count
            • Sparseint-unary-minus
            • Sparseint-length
            • Sparseint-bitnot
            • Sparseint-bitcount
            • Int-to-sparseint
            • Sparseint-val
          • Bitops
          • Bv
          • Ihs
          • Rtl
        • Algebra
      • Testing-utilities
    • Sparseint-impl

    Sparseint$-trailing-0-count-width

    Signature
    (sparseint$-trailing-0-count-width width offset negbit x) 
      → 
    count
    Arguments
    width — Guard (posp width).
    offset — Guard (natp offset).
    negbit — Guard (bitp negbit).
    x — Guard (sparseint$-p x).
    Returns
    count — Type (acl2::maybe-natp count).

    Definitions and Theorems

    Function: sparseint$-trailing-0-count-width

    (defun sparseint$-trailing-0-count-width (width offset negbit x)
     (declare (xargs :guard (and (posp width)
                                 (natp offset)
                                 (bitp negbit)
                                 (sparseint$-p x))))
     (let ((__function__ 'sparseint$-trailing-0-count-width))
      (declare (ignorable __function__))
      (sparseint$-case
       x :leaf
       (b* (((when (mbe :logic (equal (logtail offset x.val)
                                      (- (lbfix negbit)))
                        :exec (and (<= (integer-length x.val)
                                       (lnfix offset))
                                   (eql negbit (logbit offset x.val)))))
             nil)
            (count (if (eql 1 negbit)
                       (trailing-1-count-from x.val offset)
                     (trailing-0-count-from x.val offset))))
         (and (< count (lposfix width)) count))
       :concat
       (b* ((width (lposfix width))
            (offset (lnfix offset))
            ((when (<= x.width offset))
             (sparseint$-trailing-0-count-width width (- offset x.width)
                                                negbit x.msbs))
            (width1 (- x.width offset))
            ((when (<= width width1))
             (sparseint$-trailing-0-count-width
                  width offset negbit x.lsbs))
            (lsb-count (sparseint$-trailing-0-count-width
                            width1 offset negbit x.lsbs))
            ((when lsb-count) lsb-count)
            (msb-count
                 (sparseint$-trailing-0-count-width (- width width1)
                                                    0 negbit x.msbs)))
         (and msb-count (+ width1 msb-count))))))

    Theorem: maybe-natp-of-sparseint$-trailing-0-count-width

    (defthm maybe-natp-of-sparseint$-trailing-0-count-width
      (b*
       ((count
             (sparseint$-trailing-0-count-width width offset negbit x)))
       (acl2::maybe-natp count))
      :rule-classes :type-prescription)

    Theorem: sparseint$-trailing-0-count-width-correct

    (defthm sparseint$-trailing-0-count-width-correct
     (b*
      ((common-lisp::?count
            (sparseint$-trailing-0-count-width width offset negbit x)))
      (and
       (iff count
            (not (equal (logext width
                                (logtail offset (sparseint$-val x)))
                        (- (bfix negbit)))))
       (implies
          (not (equal (logext width
                              (logtail offset (sparseint$-val x)))
                      (- (bfix negbit))))
          (equal count
                 (trailing-0-count
                      (logxor (- (bfix negbit))
                              (logtail offset (sparseint$-val x)))))))))

    Theorem: sparseint$-trailing-0-count-width-of-pos-fix-width

    (defthm sparseint$-trailing-0-count-width-of-pos-fix-width
      (equal (sparseint$-trailing-0-count-width (pos-fix width)
                                                offset negbit x)
             (sparseint$-trailing-0-count-width width offset negbit x)))

    Theorem: sparseint$-trailing-0-count-width-pos-equiv-congruence-on-width

    (defthm
        sparseint$-trailing-0-count-width-pos-equiv-congruence-on-width
     (implies
      (pos-equiv width width-equiv)
      (equal
       (sparseint$-trailing-0-count-width width offset negbit x)
       (sparseint$-trailing-0-count-width width-equiv offset negbit x)))
     :rule-classes :congruence)

    Theorem: sparseint$-trailing-0-count-width-of-nfix-offset

    (defthm sparseint$-trailing-0-count-width-of-nfix-offset
      (equal (sparseint$-trailing-0-count-width width (nfix offset)
                                                negbit x)
             (sparseint$-trailing-0-count-width width offset negbit x)))

    Theorem: sparseint$-trailing-0-count-width-nat-equiv-congruence-on-offset

    (defthm
       sparseint$-trailing-0-count-width-nat-equiv-congruence-on-offset
     (implies
      (nat-equiv offset offset-equiv)
      (equal
       (sparseint$-trailing-0-count-width width offset negbit x)
       (sparseint$-trailing-0-count-width width offset-equiv negbit x)))
     :rule-classes :congruence)

    Theorem: sparseint$-trailing-0-count-width-of-bfix-negbit

    (defthm sparseint$-trailing-0-count-width-of-bfix-negbit
      (equal
           (sparseint$-trailing-0-count-width width offset (bfix negbit)
                                              x)
           (sparseint$-trailing-0-count-width width offset negbit x)))

    Theorem: sparseint$-trailing-0-count-width-bit-equiv-congruence-on-negbit

    (defthm
       sparseint$-trailing-0-count-width-bit-equiv-congruence-on-negbit
     (implies
      (bit-equiv negbit negbit-equiv)
      (equal
       (sparseint$-trailing-0-count-width width offset negbit x)
       (sparseint$-trailing-0-count-width width offset negbit-equiv x)))
     :rule-classes :congruence)

    Theorem: sparseint$-trailing-0-count-width-of-sparseint$-fix-x

    (defthm sparseint$-trailing-0-count-width-of-sparseint$-fix-x
      (equal (sparseint$-trailing-0-count-width
                  width offset negbit (sparseint$-fix x))
             (sparseint$-trailing-0-count-width width offset negbit x)))

    Theorem: sparseint$-trailing-0-count-width-sparseint$-equiv-congruence-on-x

    (defthm
     sparseint$-trailing-0-count-width-sparseint$-equiv-congruence-on-x
     (implies
      (sparseint$-equiv x x-equiv)
      (equal
       (sparseint$-trailing-0-count-width width offset negbit x)
       (sparseint$-trailing-0-count-width width offset negbit x-equiv)))
     :rule-classes :congruence)