• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
          • Df
          • Unsigned-byte-p
          • Posp
          • Natp
          • <
          • +
          • Bitp
          • Zero-test-idioms
          • Nat-listp
          • Integerp
          • *
          • Zp
          • -
          • Signed-byte-p
          • Logbitp
            • Open-logbitp-of-const-meta
              • Ihs/logbitp-lemmas
              • Equal-by-logbitp
              • Logbit
              • Logbitp-mismatch
              • Logbitp-bounds
              • Logbitp-defaults
              • Logbitp*
            • Sharp-f-reader
            • Expt
            • Rationalp
            • Ash
            • <=
            • Logand
            • =
            • Nfix
            • Floor
            • Random$
            • Integer-listp
            • Complex
            • Numbers-introduction
            • Truncate
            • Code-char
            • Char-code
            • Logior
            • Integer-length
            • Zip
            • Sharp-u-reader
            • Mod
            • Unary--
            • Boole$
            • Logxor
            • /
            • Integer-range-p
            • Ifix
            • Lognot
            • Allocate-fixnum-range
            • ACL2-numberp
            • Sharp-d-reader
            • Mod-expt
            • Ceiling
            • Round
            • Evenp
            • Logeqv
            • Fix
            • Explode-nonnegative-integer
            • Max
            • Zerop
            • Abs
            • Nonnegative-integer-quotient
            • Rfix
            • 1+
            • Signum
            • Rem
            • Real/rationalp
            • Rational-listp
            • Pos-listp
            • >=
            • >
            • Logcount
            • ACL2-number-listp
            • /=
            • Unary-/
            • Realfix
            • Complex/complex-rationalp
            • Logtest
            • Logandc1
            • 1-
            • Logorc1
            • Logandc2
            • Denominator
            • Numerator
            • Logorc2
            • Lognor
            • The-number
            • Int=
            • Complex-rationalp
            • Min
            • Lognand
            • Zpf
            • Oddp
            • Minusp
            • Imagpart
            • Conjugate
            • Realpart
            • Plusp
          • Efficiency
          • Irrelevant-formals
          • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
          • Redefining-programs
          • Lists
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Miscellaneous
        • Output-controls
        • Bdd
        • Macros
        • Installation
        • Mailing-lists
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Bitops/equal-by-logbitp
    • Logbitp

    Open-logbitp-of-const-meta

    Rewrite terms like (logbitp foo 7) to (or (not (natp foo)) (member-equal foo '(0 1 2))).

    This meta rule targets terms of the form

    (logbitp term const)

    where const is a quoted constant, typically a number. We know that such a term can only be true when term happens to be one of the bit positions that has a 1 bit set in const, so we can split into cases based on which bits of const are set.

    Note that this rule basically is going to split into n cases, where n is the number of 1 bits in const! Because of this we keep it disabled. But if you see a logbitp term applied to a constant, you might want to consider enabling this rule.

    Definitions and Theorems

    Theorem: lbpc-ev-constraint-0

    (defthm lbpc-ev-constraint-0
     (implies (and (consp x)
                   (syntaxp (not (equal a ''nil)))
                   (not (equal (car x) 'quote)))
              (equal (lbpc-ev x a)
                     (lbpc-ev (cons (car x)
                                    (kwote-lst (lbpc-ev-lst (cdr x) a)))
                              nil))))

    Theorem: lbpc-ev-constraint-1

    (defthm lbpc-ev-constraint-1
      (implies (symbolp x)
               (equal (lbpc-ev x a)
                      (and x (cdr (assoc-equal x a))))))

    Theorem: lbpc-ev-constraint-2

    (defthm lbpc-ev-constraint-2
      (implies (and (consp x) (equal (car x) 'quote))
               (equal (lbpc-ev x a) (cadr x))))

    Theorem: lbpc-ev-constraint-3

    (defthm lbpc-ev-constraint-3
      (implies (and (consp x) (consp (car x)))
               (equal (lbpc-ev x a)
                      (lbpc-ev (caddr (car x))
                               (pairlis$ (cadr (car x))
                                         (lbpc-ev-lst (cdr x) a))))))

    Theorem: lbpc-ev-constraint-4

    (defthm lbpc-ev-constraint-4
      (implies (not (consp acl2::x-lst))
               (equal (lbpc-ev-lst acl2::x-lst a)
                      nil)))

    Theorem: lbpc-ev-constraint-5

    (defthm lbpc-ev-constraint-5
      (implies (consp acl2::x-lst)
               (equal (lbpc-ev-lst acl2::x-lst a)
                      (cons (lbpc-ev (car acl2::x-lst) a)
                            (lbpc-ev-lst (cdr acl2::x-lst) a)))))

    Theorem: lbpc-ev-constraint-6

    (defthm lbpc-ev-constraint-6
      (implies (and (not (consp x)) (not (symbolp x)))
               (equal (lbpc-ev x a) nil)))

    Theorem: lbpc-ev-constraint-7

    (defthm lbpc-ev-constraint-7
      (implies (and (consp x)
                    (not (consp (car x)))
                    (not (symbolp (car x))))
               (equal (lbpc-ev x a) nil)))

    Theorem: lbpc-ev-constraint-8

    (defthm lbpc-ev-constraint-8
      (implies (and (consp x) (equal (car x) 'logbitp))
               (equal (lbpc-ev x a)
                      (logbitp (lbpc-ev (cadr x) a)
                               (lbpc-ev (caddr x) a)))))

    Theorem: lbpc-ev-constraint-9

    (defthm lbpc-ev-constraint-9
      (implies (and (consp x) (equal (car x) 'not))
               (equal (lbpc-ev x a)
                      (not (lbpc-ev (cadr x) a)))))

    Theorem: lbpc-ev-constraint-10

    (defthm lbpc-ev-constraint-10
      (implies (and (consp x) (equal (car x) 'if))
               (equal (lbpc-ev x a)
                      (if (lbpc-ev (cadr x) a)
                          (lbpc-ev (caddr x) a)
                        (lbpc-ev (cadddr x) a)))))

    Theorem: lbpc-ev-constraint-11

    (defthm lbpc-ev-constraint-11
      (implies (and (consp x) (equal (car x) 'equal))
               (equal (lbpc-ev x a)
                      (equal (lbpc-ev (cadr x) a)
                             (lbpc-ev (caddr x) a)))))

    Theorem: lbpc-ev-constraint-12

    (defthm lbpc-ev-constraint-12
      (implies (and (consp x) (equal (car x) 'natp))
               (equal (lbpc-ev x a)
                      (natp (lbpc-ev (cadr x) a)))))

    Theorem: lbpc-ev-constraint-13

    (defthm lbpc-ev-constraint-13
      (implies (and (consp x) (equal (car x) 'zp))
               (equal (lbpc-ev x a)
                      (zp (lbpc-ev (cadr x) a)))))

    Theorem: lbpc-ev-constraint-14

    (defthm lbpc-ev-constraint-14
      (implies (and (consp x)
                    (equal (car x) 'member-equal))
               (equal (lbpc-ev x a)
                      (member-equal (lbpc-ev (cadr x) a)
                                    (lbpc-ev (caddr x) a)))))

    Function: bits-between

    (defun bits-between (n m x)
      (declare (xargs :guard (and (natp n)
                                  (natp m)
                                  (<= n m)
                                  (integerp x))))
      (let* ((n (lnfix n)) (m (lnfix m)))
        (cond ((mbe :logic (zp (- m n)) :exec (= m n))
               nil)
              ((logbitp n x)
               (cons n (bits-between (+ n 1) m x)))
              (t (bits-between (+ n 1) m x)))))

    Function: enumerate-logbitps

    (defun enumerate-logbitps (x)
      (declare (xargs :guard (integerp x)))
      (bits-between 0 (integer-length x) x))

    Function: open-logbitp-of-const

    (defun open-logbitp-of-const (term)
     (declare (xargs :guard (pseudo-termp term)))
     (case-match term
      (('logbitp x ('quote const . &) . &)
       (cond
        ((or (not (integerp const)) (= const 0))
         ''nil)
        ((= const -1) ''t)
        ((natp const)
         (cons
          'if
          (cons
           (cons 'natp (cons x 'nil))
           (cons
            (cons
             'if
             (cons
              (cons
               'member-equal
               (cons x
                     (cons (cons 'quote
                                 (cons (enumerate-logbitps const) 'nil))
                           'nil)))
              '('t 'nil)))
            (cons (cons 'quote
                        (cons (logbitp 0 const) 'nil))
                  'nil)))))
        (t
         (cons
          'if
          (cons
           (cons 'natp (cons x 'nil))
           (cons
            (cons
             'not
             (cons
              (cons
               'member-equal
               (cons
                   x
                   (cons (cons 'quote
                               (cons (enumerate-logbitps (lognot const))
                                     'nil))
                         'nil)))
              'nil))
            (cons (cons 'quote
                        (cons (logbitp 0 const) 'nil))
                  'nil)))))))
      (& term)))

    Theorem: open-logbitp-of-const-meta

    (defthm open-logbitp-of-const-meta
      (equal (lbpc-ev x a)
             (lbpc-ev (open-logbitp-of-const x) a))
      :rule-classes ((:meta :trigger-fns (logbitp))))

    Function: open-logbitp-of-const-lite

    (defun open-logbitp-of-const-lite (term)
     (declare (xargs :guard (pseudo-termp term)))
     (case-match term
      (('logbitp x ('quote const . &) . &)
       (cond
        ((or (not (integerp const)) (= const 0))
         ''nil)
        ((= const -1) ''t)
        ((natp const)
         (let ((len (1- (integer-length const))))
           (if (equal const (ash 1 len))
               (if (= len 0)
                   (cons 'zp (cons x 'nil))
                 (cons 'equal
                       (cons x
                             (cons (cons 'quote (cons len 'nil))
                                   'nil))))
             term)))
        (t
         (let* ((const (lognot const))
                (len (1- (integer-length const))))
          (if
           (equal const (ash 1 len))
           (if (= len 0)
               (cons 'not
                     (cons (cons 'zp (cons x 'nil)) 'nil))
             (cons 'not
                   (cons (cons 'equal
                               (cons x
                                     (cons (cons 'quote (cons len 'nil))
                                           'nil)))
                         'nil)))
           term)))))
      (& term)))

    Theorem: open-logbitp-of-const-lite-meta

    (defthm open-logbitp-of-const-lite-meta
      (equal (lbpc-ev x a)
             (lbpc-ev (open-logbitp-of-const-lite x)
                      a))
      :rule-classes ((:meta :trigger-fns (logbitp))))