• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
        • Invariant-risk
        • Errors
        • Defabbrev
        • Conses
        • Alists
        • Set-register-invariant-risk
        • Strings
          • Std/strings
            • Pretty-printing
            • Printtree
            • Base64
            • Charset-p
            • Strtok!
            • Cases
            • Concatenation
            • Character-kinds
            • Html-encoding
            • Substrings
            • Strtok
            • Equivalences
              • Charlisteqv
                • Icharlisteqv
                • Istreqv
                • Ichareqv
                • Streqv
                • Chareqv
                • Char-fix
                • Str-fix
              • Url-encoding
              • Lines
              • Explode-implode-equalities
              • Ordering
              • Numbers
              • Pad-trim
              • Coercion
              • Std/strings/digit-to-char
              • Substitution
              • Symbols
            • String-listp
            • Stringp
            • Length
            • Search
            • Remove-duplicates
            • Position
            • Coerce
            • Concatenate
            • Reverse
            • String
            • Subseq
            • Substitute
            • String-upcase
            • String-downcase
            • Count
            • Char
            • String<
            • String-equal
            • String-utilities
            • String-append
            • String>=
            • String<=
            • String>
            • Hex-digit-char-theorems
            • String-downcase-gen
            • String-upcase-gen
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Miscellaneous
        • Output-controls
        • Bdd
        • Macros
        • Installation
        • Mailing-lists
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Equivalences

    Charlisteqv

    Case-sensitive character-list equivalence test.

    Signature
    (charlisteqv x y) → equivp
    Arguments
    x — Guard (character-listp x).
    y — Guard (character-listp y).

    (charlisteqv x y) determines if x and y are equivalent when interpreted as character lists. That is, x and y must have the same length and their elements must be chareqv to one another.

    See also icharlisteqv for a case-insensitive alternative.

    Definitions and Theorems

    Function: charlisteqv$inline

    (defun charlisteqv$inline (x y)
      (declare (xargs :guard (and (character-listp x)
                                  (character-listp y))))
      (let ((acl2::__function__ 'charlisteqv))
        (declare (ignorable acl2::__function__))
        (mbe :logic (equal (make-character-list x)
                           (make-character-list y))
             :exec (equal x y))))

    Theorem: charlisteqv-is-an-equivalence

    (defthm charlisteqv-is-an-equivalence
      (and (booleanp (charlisteqv x y))
           (charlisteqv x x)
           (implies (charlisteqv x y)
                    (charlisteqv y x))
           (implies (and (charlisteqv x y)
                         (charlisteqv y z))
                    (charlisteqv x z)))
      :rule-classes (:equivalence))

    Theorem: list-equiv-refines-charlisteqv

    (defthm list-equiv-refines-charlisteqv
      (implies (list-equiv x y)
               (charlisteqv x y))
      :rule-classes (:refinement))

    Theorem: charlisteqv-implies-chareqv-car-1

    (defthm charlisteqv-implies-chareqv-car-1
      (implies (charlisteqv x x-equiv)
               (chareqv (car x) (car x-equiv)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-charlisteqv-cdr-1

    (defthm charlisteqv-implies-charlisteqv-cdr-1
      (implies (charlisteqv x x-equiv)
               (charlisteqv (cdr x) (cdr x-equiv)))
      :rule-classes (:congruence))

    Theorem: chareqv-implies-charlisteqv-cons-1

    (defthm chareqv-implies-charlisteqv-cons-1
      (implies (chareqv a a-equiv)
               (charlisteqv (cons a x)
                            (cons a-equiv x)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-charlisteqv-cons-2

    (defthm charlisteqv-implies-charlisteqv-cons-2
      (implies (charlisteqv x x-equiv)
               (charlisteqv (cons a x)
                            (cons a x-equiv)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-equal-len-1

    (defthm charlisteqv-implies-equal-len-1
      (implies (charlisteqv x x-equiv)
               (equal (len x) (len x-equiv)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-charlisteqv-list-fix-1

    (defthm charlisteqv-implies-charlisteqv-list-fix-1
      (implies (charlisteqv x x-equiv)
               (charlisteqv (list-fix x)
                            (list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-chareqv-nth-2

    (defthm charlisteqv-implies-chareqv-nth-2
      (implies (charlisteqv x x-equiv)
               (chareqv (nth n x) (nth n x-equiv)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-charlisteqv-take-2

    (defthm charlisteqv-implies-charlisteqv-take-2
      (implies (charlisteqv x x-equiv)
               (charlisteqv (take n x)
                            (take n x-equiv)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-charlisteqv-nthcdr-2

    (defthm charlisteqv-implies-charlisteqv-nthcdr-2
      (implies (charlisteqv x x-equiv)
               (charlisteqv (nthcdr n x)
                            (nthcdr n x-equiv)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-charlisteqv-append-1

    (defthm charlisteqv-implies-charlisteqv-append-1
      (implies (charlisteqv x x-equiv)
               (charlisteqv (append x y)
                            (append x-equiv y)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-charlisteqv-append-2

    (defthm charlisteqv-implies-charlisteqv-append-2
      (implies (charlisteqv y y-equiv)
               (charlisteqv (append x y)
                            (append x y-equiv)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-charlisteqv-rev-1

    (defthm charlisteqv-implies-charlisteqv-rev-1
      (implies (charlisteqv x x-equiv)
               (charlisteqv (rev x) (rev x-equiv)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-charlisteqv-revappend-2

    (defthm charlisteqv-implies-charlisteqv-revappend-2
      (implies (charlisteqv y y-equiv)
               (charlisteqv (revappend x y)
                            (revappend x y-equiv)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-charlisteqv-revappend-1

    (defthm charlisteqv-implies-charlisteqv-revappend-1
      (implies (charlisteqv x x-equiv)
               (charlisteqv (revappend x y)
                            (revappend x-equiv y)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-equal-make-character-list-1

    (defthm charlisteqv-implies-equal-make-character-list-1
      (implies (charlisteqv x x-equiv)
               (equal (make-character-list x)
                      (make-character-list x-equiv)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-implies-equal-implode-1

    (defthm charlisteqv-implies-equal-implode-1
      (implies (charlisteqv x x-equiv)
               (equal (implode x) (implode x-equiv)))
      :rule-classes (:congruence))

    Theorem: charlisteqv-when-not-consp-left

    (defthm charlisteqv-when-not-consp-left
      (implies (not (consp x))
               (equal (charlisteqv x y) (atom y))))

    Theorem: charlisteqv-when-not-consp-right

    (defthm charlisteqv-when-not-consp-right
      (implies (not (consp y))
               (equal (charlisteqv x y) (atom x))))

    Theorem: charlisteqv-of-cons-right

    (defthm charlisteqv-of-cons-right
      (equal (charlisteqv x (cons a y))
             (and (consp x)
                  (chareqv (car x) (double-rewrite a))
                  (charlisteqv (cdr x)
                               (double-rewrite y)))))

    Theorem: charlisteqv-of-cons-left

    (defthm charlisteqv-of-cons-left
      (equal (charlisteqv (cons a x) y)
             (and (consp y)
                  (chareqv (double-rewrite a) (car y))
                  (charlisteqv (double-rewrite x)
                               (cdr y)))))

    Theorem: charlisteqv-when-not-same-lens

    (defthm charlisteqv-when-not-same-lens
      (implies (not (equal (len x) (len y)))
               (not (charlisteqv x y))))

    Theorem: make-character-list-is-identity-under-charlisteqv

    (defthm make-character-list-is-identity-under-charlisteqv
      (charlisteqv (make-character-list x) x))

    Theorem: charlisteqv*

    (defthm charlisteqv*
      (equal (charlisteqv x y)
             (if (consp x)
                 (and (consp y)
                      (chareqv (car x) (car y))
                      (charlisteqv (cdr x) (cdr y)))
               (atom y)))
      :rule-classes
      ((:definition :controller-alist ((charlisteqv$inline t nil)))))