• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
          • Address
          • Wire
          • Module
          • Lhs
          • Path
          • Svar-add-namespace
          • Design
          • Modinst
          • Lhs-add-namespace
          • Modalist
          • Path-add-namespace
          • Modname->submodnames
          • Name
            • Name-p
            • Name-equiv
            • Name-fix
            • Namelist
              • Namelist-fix
              • Namelist-equiv
              • Namelist-p
                • Namelist-p-basics
            • Constraintlist-addr-p
            • Svex-alist-addr-p
            • Svar-map-addr-p
            • Lhspairs-addr-p
            • Modname
            • Assigns-addr-p
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-list-measure
            • Attributes
            • Modhier-measure
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Namelist-p

    Namelist-p-basics

    Basic theorems about namelist-p, generated by std::deflist.

    Definitions and Theorems

    Theorem: namelist-p-of-cons

    (defthm namelist-p-of-cons
      (equal (namelist-p (cons acl2::a x))
             (and (name-p acl2::a) (namelist-p x)))
      :rule-classes ((:rewrite)))

    Theorem: namelist-p-of-cdr-when-namelist-p

    (defthm namelist-p-of-cdr-when-namelist-p
      (implies (namelist-p (double-rewrite x))
               (namelist-p (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: namelist-p-when-not-consp

    (defthm namelist-p-when-not-consp
      (implies (not (consp x))
               (equal (namelist-p x) (not x)))
      :rule-classes ((:rewrite)))

    Theorem: name-p-of-car-when-namelist-p

    (defthm name-p-of-car-when-namelist-p
      (implies (namelist-p x)
               (iff (name-p (car x))
                    (or (consp x) (name-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-namelist-p-compound-recognizer

    (defthm true-listp-when-namelist-p-compound-recognizer
      (implies (namelist-p x) (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: namelist-p-of-list-fix

    (defthm namelist-p-of-list-fix
      (implies (namelist-p x)
               (namelist-p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: namelist-p-of-rev

    (defthm namelist-p-of-rev
      (equal (namelist-p (rev x))
             (namelist-p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: namelist-p-of-repeat

    (defthm namelist-p-of-repeat
      (iff (namelist-p (repeat acl2::n x))
           (or (name-p x) (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: namelist-p-of-append

    (defthm namelist-p-of-append
      (equal (namelist-p (append acl2::a acl2::b))
             (and (namelist-p (list-fix acl2::a))
                  (namelist-p acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: namelist-p-of-take

    (defthm namelist-p-of-take
      (implies (namelist-p (double-rewrite x))
               (iff (namelist-p (take acl2::n x))
                    (or (name-p nil)
                        (<= (nfix acl2::n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: namelist-p-of-butlast

    (defthm namelist-p-of-butlast
      (implies (namelist-p (double-rewrite x))
               (namelist-p (butlast x acl2::n)))
      :rule-classes ((:rewrite)))