• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • C
          • Syntax-for-tools
            • Formalized-subset
            • Mapping-to-language-definition
            • Input-files
            • Compilation-database
            • Printer
            • Output-files
            • Abstract-syntax-operations
            • Implementation-environments
            • Abstract-syntax
            • Concrete-syntax
            • Disambiguation
            • Validation
              • Validator
              • Validation-information
                • Abstract-syntax-annop
                • Types
                • Abstract-syntax-anno-additional-theroems
                • Valid-ext-info
                • Valid-table
                • Valid-ord-info
                • Uid
                • Stmts-types
                • Lifetime
                • Init-declor-info
                • Fundef-types
                • Expr-type
                • Valid-defstatus
                • Var-info
                • Valid-ord-info-option
                • Valid-ext-info-option
                • Uid-option
                • Linkage-option
                • Linkage
                • Lifetime-option
                • Valid-table-option
                • Iconst-info
                • Param-declor-nonabstract-info
                • Fundef-info
                • Expr-null-pointer-constp
                • Valid-scope
                • Const-expr-null-pointer-constp
                • Expr-string-info
                • Expr-funcall-info
                • Expr-arrsub-info
                • Tyname-info
                • Transunit-info
                • Expr-unary-info
                • Expr-const-info
                • Expr-binary-info
                • Stmt-types
                • Block-item-list-types
                • Initer-type
                • Valid-ord-scope
                • Uid-increment
                • Uid-equal
                • Coerce-var-info
                • Valid-externals
                • Irr-var-info
                • Valid-scope-list
                  • Valid-scope-list-fix
                  • Valid-scope-list-equiv
                  • Valid-scope-listp
                    • Valid-scope-listp-basics
                  • Irr-valid-table
                  • Irr-lifetime
                  • Irr-uid
                  • Irr-linkage
                  • Block-item-types
                  • Comp-stmt-types
              • Gcc-builtins
              • Preprocessing
              • Parsing
            • Atc
            • Transformation-tools
            • Language
            • Representation
            • Insertion-sort
            • Pack
          • Soft
          • Bv
          • Imp-language
          • Ethereum
          • Event-macros
          • Java
          • Riscv
          • Bitcoin
          • Zcash
          • Yul
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Axe
          • Lists-light
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Valid-scope-listp

    Valid-scope-listp-basics

    Basic theorems about valid-scope-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: valid-scope-listp-of-cons

    (defthm valid-scope-listp-of-cons
      (equal (valid-scope-listp (cons acl2::a acl2::x))
             (and (valid-scopep acl2::a)
                  (valid-scope-listp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-cdr-when-valid-scope-listp

    (defthm valid-scope-listp-of-cdr-when-valid-scope-listp
      (implies (valid-scope-listp (double-rewrite acl2::x))
               (valid-scope-listp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-when-not-consp

    (defthm valid-scope-listp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (valid-scope-listp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scopep-of-car-when-valid-scope-listp

    (defthm valid-scopep-of-car-when-valid-scope-listp
      (implies (valid-scope-listp acl2::x)
               (iff (valid-scopep (car acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-valid-scope-listp-compound-recognizer

    (defthm true-listp-when-valid-scope-listp-compound-recognizer
      (implies (valid-scope-listp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: valid-scope-listp-of-list-fix

    (defthm valid-scope-listp-of-list-fix
      (implies (valid-scope-listp acl2::x)
               (valid-scope-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-sfix

    (defthm valid-scope-listp-of-sfix
      (iff (valid-scope-listp (sfix acl2::x))
           (or (valid-scope-listp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-insert

    (defthm valid-scope-listp-of-insert
      (iff (valid-scope-listp (insert acl2::a acl2::x))
           (and (valid-scope-listp (sfix acl2::x))
                (valid-scopep acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-delete

    (defthm valid-scope-listp-of-delete
      (implies (valid-scope-listp acl2::x)
               (valid-scope-listp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-mergesort

    (defthm valid-scope-listp-of-mergesort
      (iff (valid-scope-listp (mergesort acl2::x))
           (valid-scope-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-union

    (defthm valid-scope-listp-of-union
      (iff (valid-scope-listp (union acl2::x acl2::y))
           (and (valid-scope-listp (sfix acl2::x))
                (valid-scope-listp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-intersect-1

    (defthm valid-scope-listp-of-intersect-1
      (implies (valid-scope-listp acl2::x)
               (valid-scope-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-intersect-2

    (defthm valid-scope-listp-of-intersect-2
      (implies (valid-scope-listp acl2::y)
               (valid-scope-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-difference

    (defthm valid-scope-listp-of-difference
      (implies (valid-scope-listp acl2::x)
               (valid-scope-listp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-duplicated-members

    (defthm valid-scope-listp-of-duplicated-members
      (implies (valid-scope-listp acl2::x)
               (valid-scope-listp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-rev

    (defthm valid-scope-listp-of-rev
      (equal (valid-scope-listp (rev acl2::x))
             (valid-scope-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-append

    (defthm valid-scope-listp-of-append
      (equal (valid-scope-listp (append acl2::a acl2::b))
             (and (valid-scope-listp (list-fix acl2::a))
                  (valid-scope-listp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-rcons

    (defthm valid-scope-listp-of-rcons
      (iff (valid-scope-listp (rcons acl2::a acl2::x))
           (and (valid-scopep acl2::a)
                (valid-scope-listp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: valid-scopep-when-member-equal-of-valid-scope-listp

    (defthm valid-scopep-when-member-equal-of-valid-scope-listp
      (and (implies (and (member-equal acl2::a acl2::x)
                         (valid-scope-listp acl2::x))
                    (valid-scopep acl2::a))
           (implies (and (valid-scope-listp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (valid-scopep acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-when-subsetp-equal

    (defthm valid-scope-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (valid-scope-listp acl2::y))
                    (equal (valid-scope-listp acl2::x)
                           (true-listp acl2::x)))
           (implies (and (valid-scope-listp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (valid-scope-listp acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-set-difference-equal

    (defthm valid-scope-listp-of-set-difference-equal
      (implies
           (valid-scope-listp acl2::x)
           (valid-scope-listp (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-intersection-equal-1

    (defthm valid-scope-listp-of-intersection-equal-1
      (implies (valid-scope-listp (double-rewrite acl2::x))
               (valid-scope-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-intersection-equal-2

    (defthm valid-scope-listp-of-intersection-equal-2
      (implies (valid-scope-listp (double-rewrite acl2::y))
               (valid-scope-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-union-equal

    (defthm valid-scope-listp-of-union-equal
      (equal (valid-scope-listp (union-equal acl2::x acl2::y))
             (and (valid-scope-listp (list-fix acl2::x))
                  (valid-scope-listp (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-take

    (defthm valid-scope-listp-of-take
      (implies (valid-scope-listp (double-rewrite acl2::x))
               (iff (valid-scope-listp (take acl2::n acl2::x))
                    (or (valid-scopep nil)
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-repeat

    (defthm valid-scope-listp-of-repeat
      (iff (valid-scope-listp (repeat acl2::n acl2::x))
           (or (valid-scopep acl2::x)
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scopep-of-nth-when-valid-scope-listp

    (defthm valid-scopep-of-nth-when-valid-scope-listp
      (implies (valid-scope-listp acl2::x)
               (iff (valid-scopep (nth acl2::n acl2::x))
                    (< (nfix acl2::n) (len acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-update-nth

    (defthm valid-scope-listp-of-update-nth
      (implies
           (valid-scope-listp (double-rewrite acl2::x))
           (iff (valid-scope-listp (update-nth acl2::n acl2::y acl2::x))
                (and (valid-scopep acl2::y)
                     (or (<= (nfix acl2::n) (len acl2::x))
                         (valid-scopep nil)))))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-butlast

    (defthm valid-scope-listp-of-butlast
      (implies (valid-scope-listp (double-rewrite acl2::x))
               (valid-scope-listp (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-nthcdr

    (defthm valid-scope-listp-of-nthcdr
      (implies (valid-scope-listp (double-rewrite acl2::x))
               (valid-scope-listp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-last

    (defthm valid-scope-listp-of-last
      (implies (valid-scope-listp (double-rewrite acl2::x))
               (valid-scope-listp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-remove

    (defthm valid-scope-listp-of-remove
      (implies (valid-scope-listp acl2::x)
               (valid-scope-listp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-scope-listp-of-revappend

    (defthm valid-scope-listp-of-revappend
      (equal (valid-scope-listp (revappend acl2::x acl2::y))
             (and (valid-scope-listp (list-fix acl2::x))
                  (valid-scope-listp acl2::y)))
      :rule-classes ((:rewrite)))