Fixing function for macro-table structures.
(macro-table-fix x) → new-x
Function:
(defun macro-table-fix$inline (x) (declare (xargs :guard (macro-tablep x))) (mbe :logic (b* ((alist (ident-macroinfo-alist-fix (cdr (std::da-nth 0 x))))) (let ((alist (if (no-duplicatesp-equal (strip-cars alist)) alist nil))) (list (cons 'alist alist)))) :exec x))
Theorem:
(defthm macro-tablep-of-macro-table-fix (b* ((new-x (macro-table-fix$inline x))) (macro-tablep new-x)) :rule-classes :rewrite)
Theorem:
(defthm macro-table-fix-when-macro-tablep (implies (macro-tablep x) (equal (macro-table-fix x) x)))
Function:
(defun macro-table-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (macro-tablep acl2::x) (macro-tablep acl2::y)))) (equal (macro-table-fix acl2::x) (macro-table-fix acl2::y)))
Theorem:
(defthm macro-table-equiv-is-an-equivalence (and (booleanp (macro-table-equiv x y)) (macro-table-equiv x x) (implies (macro-table-equiv x y) (macro-table-equiv y x)) (implies (and (macro-table-equiv x y) (macro-table-equiv y z)) (macro-table-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm macro-table-equiv-implies-equal-macro-table-fix-1 (implies (macro-table-equiv acl2::x x-equiv) (equal (macro-table-fix acl2::x) (macro-table-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm macro-table-fix-under-macro-table-equiv (macro-table-equiv (macro-table-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-macro-table-fix-1-forward-to-macro-table-equiv (implies (equal (macro-table-fix acl2::x) acl2::y) (macro-table-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-macro-table-fix-2-forward-to-macro-table-equiv (implies (equal acl2::x (macro-table-fix acl2::y)) (macro-table-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm macro-table-equiv-of-macro-table-fix-1-forward (implies (macro-table-equiv (macro-table-fix acl2::x) acl2::y) (macro-table-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm macro-table-equiv-of-macro-table-fix-2-forward (implies (macro-table-equiv acl2::x (macro-table-fix acl2::y)) (macro-table-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm macro-table-fix$inline-of-macro-table-fix-x (equal (macro-table-fix$inline (macro-table-fix x)) (macro-table-fix$inline x)))
Theorem:
(defthm macro-table-fix$inline-macro-table-equiv-congruence-on-x (implies (macro-table-equiv x x-equiv) (equal (macro-table-fix$inline x) (macro-table-fix$inline x-equiv))) :rule-classes :congruence)