Fixing function for parstate$ structures.
(parstate$-fix x) → new-x
Function:
(defun parstate$-fix$inline (x) (declare (xargs :guard (parstate$-p x))) (mbe :logic (b* ((bytes (byte-list-fix (car (car x)))) (position (position-fix (car (cdr (car x))))) (chars-read (char+position-list-fix (cdr (cdr (car x))))) (chars-unread (char+position-list-fix (car (car (cdr x))))) (tokens-read (token+span-list-fix (cdr (car (cdr x))))) (tokens-unread (token+span-list-fix (car (cdr (cdr x))))) (version (c::version-fix (cdr (cdr (cdr x)))))) (cons (cons bytes (cons position chars-read)) (cons (cons chars-unread tokens-read) (cons tokens-unread version)))) :exec x))
Theorem:
(defthm parstate$-p-of-parstate$-fix (b* ((new-x (parstate$-fix$inline x))) (parstate$-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm parstate$-fix-when-parstate$-p (implies (parstate$-p x) (equal (parstate$-fix x) x)))
Function:
(defun parstate$-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (parstate$-p acl2::x) (parstate$-p acl2::y)))) (equal (parstate$-fix acl2::x) (parstate$-fix acl2::y)))
Theorem:
(defthm parstate$-equiv-is-an-equivalence (and (booleanp (parstate$-equiv x y)) (parstate$-equiv x x) (implies (parstate$-equiv x y) (parstate$-equiv y x)) (implies (and (parstate$-equiv x y) (parstate$-equiv y z)) (parstate$-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm parstate$-equiv-implies-equal-parstate$-fix-1 (implies (parstate$-equiv acl2::x x-equiv) (equal (parstate$-fix acl2::x) (parstate$-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm parstate$-fix-under-parstate$-equiv (parstate$-equiv (parstate$-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-parstate$-fix-1-forward-to-parstate$-equiv (implies (equal (parstate$-fix acl2::x) acl2::y) (parstate$-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-parstate$-fix-2-forward-to-parstate$-equiv (implies (equal acl2::x (parstate$-fix acl2::y)) (parstate$-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm parstate$-equiv-of-parstate$-fix-1-forward (implies (parstate$-equiv (parstate$-fix acl2::x) acl2::y) (parstate$-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm parstate$-equiv-of-parstate$-fix-2-forward (implies (parstate$-equiv acl2::x (parstate$-fix acl2::y)) (parstate$-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm parstate$-fix$inline-of-parstate$-fix-x (equal (parstate$-fix$inline (parstate$-fix x)) (parstate$-fix$inline x)))
Theorem:
(defthm parstate$-fix$inline-parstate$-equiv-congruence-on-x (implies (parstate$-equiv x x-equiv) (equal (parstate$-fix$inline x) (parstate$-fix$inline x-equiv))) :rule-classes :congruence)