Fixing function for version structures.
Function:
(defun version-fix$inline (x) (declare (xargs :guard (versionp x))) (mbe :logic (case (version-kind x) (:c17 (cons :c17 (list))) (:c23 (cons :c23 (list))) (:c17+gcc (cons :c17+gcc (list))) (:c23+gcc (cons :c23+gcc (list)))) :exec x))
Theorem:
(defthm versionp-of-version-fix (b* ((new-x (version-fix$inline x))) (versionp new-x)) :rule-classes :rewrite)
Theorem:
(defthm version-fix-when-versionp (implies (versionp x) (equal (version-fix x) x)))
Function:
(defun version-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (versionp acl2::x) (versionp acl2::y)))) (equal (version-fix acl2::x) (version-fix acl2::y)))
Theorem:
(defthm version-equiv-is-an-equivalence (and (booleanp (version-equiv x y)) (version-equiv x x) (implies (version-equiv x y) (version-equiv y x)) (implies (and (version-equiv x y) (version-equiv y z)) (version-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm version-equiv-implies-equal-version-fix-1 (implies (version-equiv acl2::x x-equiv) (equal (version-fix acl2::x) (version-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm version-fix-under-version-equiv (version-equiv (version-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-version-fix-1-forward-to-version-equiv (implies (equal (version-fix acl2::x) acl2::y) (version-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-version-fix-2-forward-to-version-equiv (implies (equal acl2::x (version-fix acl2::y)) (version-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm version-equiv-of-version-fix-1-forward (implies (version-equiv (version-fix acl2::x) acl2::y) (version-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm version-equiv-of-version-fix-2-forward (implies (version-equiv acl2::x (version-fix acl2::y)) (version-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm version-kind$inline-of-version-fix-x (equal (version-kind$inline (version-fix x)) (version-kind$inline x)))
Theorem:
(defthm version-kind$inline-version-equiv-congruence-on-x (implies (version-equiv x x-equiv) (equal (version-kind$inline x) (version-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-version-fix (consp (version-fix x)) :rule-classes :type-prescription)
Theorem:
(defthm version-fix$inline-of-version-fix-x (equal (version-fix$inline (version-fix x)) (version-fix$inline x)))
Theorem:
(defthm version-fix$inline-version-equiv-congruence-on-x (implies (version-equiv x x-equiv) (equal (version-fix$inline x) (version-fix$inline x-equiv))) :rule-classes :congruence)