List of
(sinteger-bit-roles-inc-n-and-sign n) → roles
The list of bit roles is well-formed, if
Function:
(defun sinteger-bit-roles-inc-n-and-sign (n) (declare (xargs :guard (natp n))) (append (sinteger-bit-roles-inc-n n) (list (sinteger-bit-role-sign))))
Theorem:
(defthm sinteger-bit-role-listp-of-sinteger-bit-roles-inc-n-and-sign (b* ((roles (sinteger-bit-roles-inc-n-and-sign n))) (sinteger-bit-role-listp roles)) :rule-classes :rewrite)
Theorem:
(defthm sinteger-bit-roles-wfp-of-sinteger-bit-roles-inc-n-and-sign (implies (not (zp n)) (sinteger-bit-roles-wfp (sinteger-bit-roles-inc-n-and-sign n))))
Theorem:
(defthm sinteger-bit-roles-exponents-of-sinteger-bit-roles-inc-n-and-sign (equal (sinteger-bit-roles-exponents (sinteger-bit-roles-inc-n-and-sign n)) (integers-from-to 0 (1- (nfix n)))))
Theorem:
(defthm sinteger-bit-roles-value-count-of-sinteger-bit-roles-inc-n-and-sign (equal (sinteger-bit-roles-value-count (sinteger-bit-roles-inc-n-and-sign n)) (nfix n)))
Theorem:
(defthm sinteger-bit-roles-inc-n-and-sign-of-nfix-n (equal (sinteger-bit-roles-inc-n-and-sign (nfix n)) (sinteger-bit-roles-inc-n-and-sign n)))
Theorem:
(defthm sinteger-bit-roles-inc-n-and-sign-nat-equiv-congruence-on-n (implies (acl2::nat-equiv n n-equiv) (equal (sinteger-bit-roles-inc-n-and-sign n) (sinteger-bit-roles-inc-n-and-sign n-equiv))) :rule-classes :congruence)