(string-stringlist-map-fix x) is a usual fty omap fixing function.
(string-stringlist-map-fix x) → *
Function:
(defun string-stringlist-map-fix (x) (declare (xargs :guard (string-stringlist-mapp x))) (mbe :logic (if (string-stringlist-mapp x) x nil) :exec x))
Theorem:
(defthm string-stringlist-mapp-of-string-stringlist-map-fix (string-stringlist-mapp (string-stringlist-map-fix x)))
Theorem:
(defthm string-stringlist-map-fix-when-string-stringlist-mapp (implies (string-stringlist-mapp x) (equal (string-stringlist-map-fix x) x)))
Theorem:
(defthm emptyp-string-stringlist-map-fix (implies (or (omap::emptyp x) (not (string-stringlist-mapp x))) (omap::emptyp (string-stringlist-map-fix x))))
Theorem:
(defthm emptyp-of-string-stringlist-map-fix-to-not-string-stringlist-map-or-emptyp (equal (omap::emptyp (string-stringlist-map-fix x)) (or (not (string-stringlist-mapp x)) (omap::emptyp x))))
Function:
(defun string-stringlist-map-equiv$inline (x y) (declare (xargs :guard (and (string-stringlist-mapp x) (string-stringlist-mapp y)))) (equal (string-stringlist-map-fix x) (string-stringlist-map-fix y)))
Theorem:
(defthm string-stringlist-map-equiv-is-an-equivalence (and (booleanp (string-stringlist-map-equiv x y)) (string-stringlist-map-equiv x x) (implies (string-stringlist-map-equiv x y) (string-stringlist-map-equiv y x)) (implies (and (string-stringlist-map-equiv x y) (string-stringlist-map-equiv y z)) (string-stringlist-map-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm string-stringlist-map-equiv-implies-equal-string-stringlist-map-fix-1 (implies (string-stringlist-map-equiv x x-equiv) (equal (string-stringlist-map-fix x) (string-stringlist-map-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm string-stringlist-map-fix-under-string-stringlist-map-equiv (string-stringlist-map-equiv (string-stringlist-map-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-string-stringlist-map-fix-1-forward-to-string-stringlist-map-equiv (implies (equal (string-stringlist-map-fix x) y) (string-stringlist-map-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-string-stringlist-map-fix-2-forward-to-string-stringlist-map-equiv (implies (equal x (string-stringlist-map-fix y)) (string-stringlist-map-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm string-stringlist-map-equiv-of-string-stringlist-map-fix-1-forward (implies (string-stringlist-map-equiv (string-stringlist-map-fix x) y) (string-stringlist-map-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm string-stringlist-map-equiv-of-string-stringlist-map-fix-2-forward (implies (string-stringlist-map-equiv x (string-stringlist-map-fix y)) (string-stringlist-map-equiv x y)) :rule-classes :forward-chaining)