• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
      • Std/lists
      • Omaps
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
      • Std/osets
      • Std/io
      • Std/basic
      • Std/system
      • Std/typed-lists
        • Std/typed-lists/character-listp
        • Std/typed-lists/symbol-listp
        • Std/typed-lists/boolean-listp
        • Std/typed-lists/string-listp
        • Std/typed-lists/eqlable-listp
        • Theorems-about-true-list-lists
        • Std/typed-lists/atom-listp
        • Unsigned-byte-listp
          • Defbytelist
            • Defbytelist-standard-instances
              • Ubyte8-list
              • Ubyte4-list
              • Ubyte32-list
              • Ubyte256-list
              • Ubyte128-list
              • Ubyte64-list
              • Ubyte3-list
              • Ubyte2-list
              • Ubyte16-list
              • Ubyte11-list
              • Ubyte1-list
              • Sbyte8-list
              • Sbyte64-list
              • Sbyte4-list
                • Sbyte4-list-fix
                • Sbyte4-list-equiv
                • Sbyte4-listp
                  • Sbyte4-listp-basics
                • Sbyte32-list
                • Sbyte3-list
                • Sbyte256-list
                • Sbyte2-list
                • Sbyte16-list
                • Sbyte128-list
                • Sbyte1-list
                • Defubytelist
                • Defsbytelist
              • Defbytelist-implementation
            • Unsigned-byte-list-fix
          • Cons-listp
          • Cons-list-listp
          • Signed-byte-listp
          • String-or-symbol-listp
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Sbyte4-listp

    Sbyte4-listp-basics

    Basic theorems about sbyte4-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: sbyte4-listp-of-cons

    (defthm sbyte4-listp-of-cons
      (equal (sbyte4-listp (cons a x))
             (and (sbyte4p a) (sbyte4-listp x)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-cdr-when-sbyte4-listp

    (defthm sbyte4-listp-of-cdr-when-sbyte4-listp
      (implies (sbyte4-listp (double-rewrite x))
               (sbyte4-listp (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-when-not-consp

    (defthm sbyte4-listp-when-not-consp
      (implies (not (consp x))
               (equal (sbyte4-listp x) (not x)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4p-of-car-when-sbyte4-listp

    (defthm sbyte4p-of-car-when-sbyte4-listp
      (implies (sbyte4-listp x)
               (iff (sbyte4p (car x)) (consp x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-sbyte4-listp-compound-recognizer

    (defthm true-listp-when-sbyte4-listp-compound-recognizer
      (implies (sbyte4-listp x)
               (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: sbyte4-listp-of-list-fix

    (defthm sbyte4-listp-of-list-fix
      (implies (sbyte4-listp x)
               (sbyte4-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-sfix

    (defthm sbyte4-listp-of-sfix
      (iff (sbyte4-listp (set::sfix x))
           (or (sbyte4-listp x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-insert

    (defthm sbyte4-listp-of-insert
      (iff (sbyte4-listp (set::insert a x))
           (and (sbyte4-listp (set::sfix x))
                (sbyte4p a)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-delete

    (defthm sbyte4-listp-of-delete
      (implies (sbyte4-listp x)
               (sbyte4-listp (set::delete k x)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-mergesort

    (defthm sbyte4-listp-of-mergesort
      (iff (sbyte4-listp (set::mergesort x))
           (sbyte4-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-union

    (defthm sbyte4-listp-of-union
      (iff (sbyte4-listp (set::union x y))
           (and (sbyte4-listp (set::sfix x))
                (sbyte4-listp (set::sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-intersect-1

    (defthm sbyte4-listp-of-intersect-1
      (implies (sbyte4-listp x)
               (sbyte4-listp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-intersect-2

    (defthm sbyte4-listp-of-intersect-2
      (implies (sbyte4-listp y)
               (sbyte4-listp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-difference

    (defthm sbyte4-listp-of-difference
      (implies (sbyte4-listp x)
               (sbyte4-listp (set::difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-duplicated-members

    (defthm sbyte4-listp-of-duplicated-members
      (implies (sbyte4-listp x)
               (sbyte4-listp (duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-rev

    (defthm sbyte4-listp-of-rev
      (equal (sbyte4-listp (rev x))
             (sbyte4-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-append

    (defthm sbyte4-listp-of-append
      (equal (sbyte4-listp (append a b))
             (and (sbyte4-listp (list-fix a))
                  (sbyte4-listp b)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-rcons

    (defthm sbyte4-listp-of-rcons
      (iff (sbyte4-listp (rcons a x))
           (and (sbyte4p a)
                (sbyte4-listp (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4p-when-member-equal-of-sbyte4-listp

    (defthm sbyte4p-when-member-equal-of-sbyte4-listp
      (and (implies (and (member-equal a x)
                         (sbyte4-listp x))
                    (sbyte4p a))
           (implies (and (sbyte4-listp x)
                         (member-equal a x))
                    (sbyte4p a)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-when-subsetp-equal

    (defthm sbyte4-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (sbyte4-listp y))
                    (equal (sbyte4-listp x) (true-listp x)))
           (implies (and (sbyte4-listp y)
                         (subsetp-equal x y))
                    (equal (sbyte4-listp x)
                           (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-set-difference-equal

    (defthm sbyte4-listp-of-set-difference-equal
      (implies (sbyte4-listp x)
               (sbyte4-listp (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-intersection-equal-1

    (defthm sbyte4-listp-of-intersection-equal-1
      (implies (sbyte4-listp (double-rewrite x))
               (sbyte4-listp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-intersection-equal-2

    (defthm sbyte4-listp-of-intersection-equal-2
      (implies (sbyte4-listp (double-rewrite y))
               (sbyte4-listp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-union-equal

    (defthm sbyte4-listp-of-union-equal
      (equal (sbyte4-listp (union-equal x y))
             (and (sbyte4-listp (list-fix x))
                  (sbyte4-listp (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-take

    (defthm sbyte4-listp-of-take
      (implies (sbyte4-listp (double-rewrite x))
               (iff (sbyte4-listp (take n x))
                    (or (sbyte4p nil)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-repeat

    (defthm sbyte4-listp-of-repeat
      (iff (sbyte4-listp (repeat n x))
           (or (sbyte4p x) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4p-of-nth-when-sbyte4-listp

    (defthm sbyte4p-of-nth-when-sbyte4-listp
      (implies (sbyte4-listp x)
               (iff (sbyte4p (nth n x))
                    (< (nfix n) (len x))))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-update-nth

    (defthm sbyte4-listp-of-update-nth
      (implies (sbyte4-listp (double-rewrite x))
               (iff (sbyte4-listp (update-nth n y x))
                    (and (sbyte4p y)
                         (or (<= (nfix n) (len x))
                             (sbyte4p nil)))))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-butlast

    (defthm sbyte4-listp-of-butlast
      (implies (sbyte4-listp (double-rewrite x))
               (sbyte4-listp (butlast x n)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-nthcdr

    (defthm sbyte4-listp-of-nthcdr
      (implies (sbyte4-listp (double-rewrite x))
               (sbyte4-listp (nthcdr n x)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-last

    (defthm sbyte4-listp-of-last
      (implies (sbyte4-listp (double-rewrite x))
               (sbyte4-listp (last x)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-remove

    (defthm sbyte4-listp-of-remove
      (implies (sbyte4-listp x)
               (sbyte4-listp (remove a x)))
      :rule-classes ((:rewrite)))

    Theorem: sbyte4-listp-of-revappend

    (defthm sbyte4-listp-of-revappend
      (equal (sbyte4-listp (revappend x y))
             (and (sbyte4-listp (list-fix x))
                  (sbyte4-listp y)))
      :rule-classes ((:rewrite)))