• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
          • Member
          • Append
          • List
          • Nth
          • Len
          • True-listp
          • String-listp
          • Nat-listp
          • Character-listp
          • Symbol-listp
          • True-list-listp
          • Length
          • Search
          • Intersection$
          • Union$
          • Remove-duplicates
          • Position
          • Update-nth
          • Take
          • Set-difference$
          • Nthcdr
          • Subsetp
          • No-duplicatesp
          • Concatenate
          • Remove
          • Remove1
          • Intersectp
          • Endp
          • Keyword-value-listp
          • Integer-listp
          • Reverse
          • Add-to-set
          • List-utilities
          • Set-size
          • Revappend
          • Subseq
          • Make-list
          • Lists-light
          • Boolean-listp
          • Butlast
          • Pairlis$
          • Substitute
          • Count
          • Keyword-listp
          • List*
          • Last
          • Eqlable-listp
          • Integer-range-listp
            • Integer-range-listp-basics
              • Integer-range-list-fix
            • Rational-listp
            • Pos-listp
            • Evens
            • Atom-listp
            • ACL2-number-listp
            • Typed-list-utilities
            • Odds
            • List$
            • Listp
            • Standard-char-listp
            • Last-cdr
            • Pairlis
            • Proper-consp
            • Improper-consp
            • Pairlis-x2
            • Pairlis-x1
            • Merge-sort-lexorder
            • Fix-true-list
            • Real-listp
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Miscellaneous
        • Output-controls
        • Bdd
        • Macros
        • Installation
        • Mailing-lists
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Integer-range-listp

    Integer-range-listp-basics

    Basic theorems about integer-range-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: integer-range-listp-of-cons

    (defthm integer-range-listp-of-cons
      (equal (integer-range-listp lower upper (cons a x))
             (and (integer-range-p lower upper a)
                  (integer-range-listp lower upper x)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-cdr-when-integer-range-listp

    (defthm integer-range-listp-of-cdr-when-integer-range-listp
      (implies (integer-range-listp lower upper (double-rewrite x))
               (integer-range-listp lower upper (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-when-not-consp

    (defthm integer-range-listp-when-not-consp
      (implies (not (consp x))
               (equal (integer-range-listp lower upper x)
                      (not x)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-p-of-car-when-integer-range-listp

    (defthm integer-range-p-of-car-when-integer-range-listp
      (implies (integer-range-listp lower upper x)
               (iff (integer-range-p lower upper (car x))
                    (consp x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-integer-range-listp

    (defthm true-listp-when-integer-range-listp
      (implies (integer-range-listp lower upper x)
               (true-listp x))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-list-fix

    (defthm integer-range-listp-of-list-fix
      (implies (integer-range-listp lower upper x)
               (integer-range-listp lower upper (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-sfix

    (defthm integer-range-listp-of-sfix
      (iff (integer-range-listp lower upper (set::sfix x))
           (or (integer-range-listp lower upper x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-insert

    (defthm integer-range-listp-of-insert
      (iff (integer-range-listp lower upper (set::insert a x))
           (and (integer-range-listp lower upper (set::sfix x))
                (integer-range-p lower upper a)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-delete

    (defthm integer-range-listp-of-delete
      (implies (integer-range-listp lower upper x)
               (integer-range-listp lower upper (set::delete k x)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-mergesort

    (defthm integer-range-listp-of-mergesort
      (iff (integer-range-listp lower upper (set::mergesort x))
           (integer-range-listp lower upper (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-union

    (defthm integer-range-listp-of-union
      (iff (integer-range-listp lower upper (set::union x y))
           (and (integer-range-listp lower upper (set::sfix x))
                (integer-range-listp lower upper (set::sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-intersect-1

    (defthm integer-range-listp-of-intersect-1
      (implies (integer-range-listp lower upper x)
               (integer-range-listp lower upper (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-intersect-2

    (defthm integer-range-listp-of-intersect-2
      (implies (integer-range-listp lower upper y)
               (integer-range-listp lower upper (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-difference

    (defthm integer-range-listp-of-difference
      (implies (integer-range-listp lower upper x)
               (integer-range-listp lower upper (set::difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-duplicated-members

    (defthm integer-range-listp-of-duplicated-members
      (implies (integer-range-listp lower upper x)
               (integer-range-listp lower upper (duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-rev

    (defthm integer-range-listp-of-rev
      (equal (integer-range-listp lower upper (rev x))
             (integer-range-listp lower upper (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-append

    (defthm integer-range-listp-of-append
      (equal (integer-range-listp lower upper (append a b))
             (and (integer-range-listp lower upper (list-fix a))
                  (integer-range-listp lower upper b)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-rcons

    (defthm integer-range-listp-of-rcons
      (iff (integer-range-listp lower upper (rcons a x))
           (and (integer-range-p lower upper a)
                (integer-range-listp lower upper (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-p-when-member-equal-of-integer-range-listp

    (defthm integer-range-p-when-member-equal-of-integer-range-listp
      (and (implies (and (member-equal a x)
                         (integer-range-listp lower upper x))
                    (integer-range-p lower upper a))
           (implies (and (integer-range-listp lower upper x)
                         (member-equal a x))
                    (integer-range-p lower upper a)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-when-subsetp-equal

    (defthm integer-range-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (integer-range-listp lower upper y))
                    (equal (integer-range-listp lower upper x)
                           (true-listp x)))
           (implies (and (integer-range-listp lower upper y)
                         (subsetp-equal x y))
                    (equal (integer-range-listp lower upper x)
                           (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-set-difference-equal

    (defthm integer-range-listp-of-set-difference-equal
      (implies
           (integer-range-listp lower upper x)
           (integer-range-listp lower upper (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-intersection-equal-1

    (defthm integer-range-listp-of-intersection-equal-1
      (implies
           (integer-range-listp lower upper (double-rewrite x))
           (integer-range-listp lower upper (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-intersection-equal-2

    (defthm integer-range-listp-of-intersection-equal-2
      (implies
           (integer-range-listp lower upper (double-rewrite y))
           (integer-range-listp lower upper (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-union-equal

    (defthm integer-range-listp-of-union-equal
      (equal (integer-range-listp lower upper (union-equal x y))
             (and (integer-range-listp lower upper (list-fix x))
                  (integer-range-listp lower upper (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-take

    (defthm integer-range-listp-of-take
      (implies (integer-range-listp lower upper (double-rewrite x))
               (iff (integer-range-listp lower upper (take n x))
                    (or (integer-range-p lower upper nil)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-repeat

    (defthm integer-range-listp-of-repeat
      (iff (integer-range-listp lower upper (repeat n x))
           (or (integer-range-p lower upper x)
               (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-p-of-nth-when-integer-range-listp

    (defthm integer-range-p-of-nth-when-integer-range-listp
      (implies (integer-range-listp lower upper x)
               (iff (integer-range-p lower upper (nth n x))
                    (< (nfix n) (len x))))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-update-nth

    (defthm integer-range-listp-of-update-nth
      (implies (integer-range-listp lower upper (double-rewrite x))
               (iff (integer-range-listp lower upper (update-nth n y x))
                    (and (integer-range-p lower upper y)
                         (or (<= (nfix n) (len x))
                             (integer-range-p lower upper nil)))))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-butlast

    (defthm integer-range-listp-of-butlast
      (implies (integer-range-listp lower upper (double-rewrite x))
               (integer-range-listp lower upper (butlast x n)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-nthcdr

    (defthm integer-range-listp-of-nthcdr
      (implies (integer-range-listp lower upper (double-rewrite x))
               (integer-range-listp lower upper (nthcdr n x)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-last

    (defthm integer-range-listp-of-last
      (implies (integer-range-listp lower upper (double-rewrite x))
               (integer-range-listp lower upper (last x)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-remove

    (defthm integer-range-listp-of-remove
      (implies (integer-range-listp lower upper x)
               (integer-range-listp lower upper (remove a x)))
      :rule-classes ((:rewrite)))

    Theorem: integer-range-listp-of-revappend

    (defthm integer-range-listp-of-revappend
      (equal (integer-range-listp lower upper (revappend x y))
             (and (integer-range-listp lower upper (list-fix x))
                  (integer-range-listp lower upper y)))
      :rule-classes ((:rewrite)))