Basic equivalence relation for plexeme structures.
Function:
(defun plexeme-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (plexemep acl2::x) (plexemep acl2::y)))) (equal (plexeme-fix acl2::x) (plexeme-fix acl2::y)))
Theorem:
(defthm plexeme-equiv-is-an-equivalence (and (booleanp (plexeme-equiv x y)) (plexeme-equiv x x) (implies (plexeme-equiv x y) (plexeme-equiv y x)) (implies (and (plexeme-equiv x y) (plexeme-equiv y z)) (plexeme-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm plexeme-equiv-implies-equal-plexeme-fix-1 (implies (plexeme-equiv acl2::x x-equiv) (equal (plexeme-fix acl2::x) (plexeme-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm plexeme-fix-under-plexeme-equiv (plexeme-equiv (plexeme-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-plexeme-fix-1-forward-to-plexeme-equiv (implies (equal (plexeme-fix acl2::x) acl2::y) (plexeme-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-plexeme-fix-2-forward-to-plexeme-equiv (implies (equal acl2::x (plexeme-fix acl2::y)) (plexeme-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm plexeme-equiv-of-plexeme-fix-1-forward (implies (plexeme-equiv (plexeme-fix acl2::x) acl2::y) (plexeme-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm plexeme-equiv-of-plexeme-fix-2-forward (implies (plexeme-equiv acl2::x (plexeme-fix acl2::y)) (plexeme-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)