Basic equivalence relation for pnumber structures.
Function:
(defun pnumber-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (pnumberp acl2::x) (pnumberp acl2::y)))) (equal (pnumber-fix acl2::x) (pnumber-fix acl2::y)))
Theorem:
(defthm pnumber-equiv-is-an-equivalence (and (booleanp (pnumber-equiv x y)) (pnumber-equiv x x) (implies (pnumber-equiv x y) (pnumber-equiv y x)) (implies (and (pnumber-equiv x y) (pnumber-equiv y z)) (pnumber-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm pnumber-equiv-implies-equal-pnumber-fix-1 (implies (pnumber-equiv acl2::x x-equiv) (equal (pnumber-fix acl2::x) (pnumber-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm pnumber-fix-under-pnumber-equiv (pnumber-equiv (pnumber-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-pnumber-fix-1-forward-to-pnumber-equiv (implies (equal (pnumber-fix acl2::x) acl2::y) (pnumber-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-pnumber-fix-2-forward-to-pnumber-equiv (implies (equal acl2::x (pnumber-fix acl2::y)) (pnumber-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm pnumber-equiv-of-pnumber-fix-1-forward (implies (pnumber-equiv (pnumber-fix acl2::x) acl2::y) (pnumber-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm pnumber-equiv-of-pnumber-fix-2-forward (implies (pnumber-equiv acl2::x (pnumber-fix acl2::y)) (pnumber-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)