(update-ppstate->lexemes-length length ppstate) → ppstate
Function:
(defun update-ppstate->lexemes-length (length ppstate) (declare (xargs :stobjs (ppstate))) (declare (xargs :guard (natp length))) (b* ((ppstate (ppstate-fix ppstate))) (raw-update-ppstate->lexemes-length (nfix length) ppstate)))
Theorem:
(defthm ppstatep-of-update-ppstate->lexemes-length (b* ((ppstate (update-ppstate->lexemes-length length ppstate))) (ppstatep ppstate)) :rule-classes :rewrite)
Theorem:
(defthm update-ppstate->lexemes-length-of-nfix-length (equal (update-ppstate->lexemes-length (nfix length) ppstate) (update-ppstate->lexemes-length length ppstate)))
Theorem:
(defthm update-ppstate->lexemes-length-nat-equiv-congruence-on-length (implies (acl2::nat-equiv length length-equiv) (equal (update-ppstate->lexemes-length length ppstate) (update-ppstate->lexemes-length length-equiv ppstate))) :rule-classes :congruence)
Theorem:
(defthm update-ppstate->lexemes-length-of-ppstate-fix-ppstate (equal (update-ppstate->lexemes-length length (ppstate-fix ppstate)) (update-ppstate->lexemes-length length ppstate)))
Theorem:
(defthm update-ppstate->lexemes-length-ppstate-equiv-congruence-on-ppstate (implies (ppstate-equiv ppstate ppstate-equiv) (equal (update-ppstate->lexemes-length length ppstate) (update-ppstate->lexemes-length length ppstate-equiv))) :rule-classes :congruence)