Recognizer for filepath-plexeme-list-alist.
(filepath-plexeme-list-alistp x) → *
Function:
(defun filepath-plexeme-list-alistp (x) (declare (xargs :guard t)) (if (atom x) (eq x nil) (and (consp (car x)) (filepathp (caar x)) (plexeme-listp (cdar x)) (filepath-plexeme-list-alistp (cdr x)))))
Theorem:
(defthm filepath-plexeme-list-alistp-of-revappend (equal (filepath-plexeme-list-alistp (revappend acl2::x acl2::y)) (and (filepath-plexeme-list-alistp (list-fix acl2::x)) (filepath-plexeme-list-alistp acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-remove (implies (filepath-plexeme-list-alistp acl2::x) (filepath-plexeme-list-alistp (remove acl2::a acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-last (implies (filepath-plexeme-list-alistp (double-rewrite acl2::x)) (filepath-plexeme-list-alistp (last acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-nthcdr (implies (filepath-plexeme-list-alistp (double-rewrite acl2::x)) (filepath-plexeme-list-alistp (nthcdr acl2::n acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-butlast (implies (filepath-plexeme-list-alistp (double-rewrite acl2::x)) (filepath-plexeme-list-alistp (butlast acl2::x acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-update-nth (implies (filepath-plexeme-list-alistp (double-rewrite acl2::x)) (iff (filepath-plexeme-list-alistp (update-nth acl2::n acl2::y acl2::x)) (and (and (consp acl2::y) (filepathp (car acl2::y)) (plexeme-listp (cdr acl2::y))) (or (<= (nfix acl2::n) (len acl2::x)) (and (consp nil) (filepathp (car nil)) (plexeme-listp (cdr nil))))))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-repeat (iff (filepath-plexeme-list-alistp (repeat acl2::n acl2::x)) (or (and (consp acl2::x) (filepathp (car acl2::x)) (plexeme-listp (cdr acl2::x))) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-take (implies (filepath-plexeme-list-alistp (double-rewrite acl2::x)) (iff (filepath-plexeme-list-alistp (take acl2::n acl2::x)) (or (and (consp nil) (filepathp (car nil)) (plexeme-listp (cdr nil))) (<= (nfix acl2::n) (len acl2::x))))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-union-equal (equal (filepath-plexeme-list-alistp (union-equal acl2::x acl2::y)) (and (filepath-plexeme-list-alistp (list-fix acl2::x)) (filepath-plexeme-list-alistp (double-rewrite acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-intersection-equal-2 (implies (filepath-plexeme-list-alistp (double-rewrite acl2::y)) (filepath-plexeme-list-alistp (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-intersection-equal-1 (implies (filepath-plexeme-list-alistp (double-rewrite acl2::x)) (filepath-plexeme-list-alistp (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-set-difference-equal (implies (filepath-plexeme-list-alistp acl2::x) (filepath-plexeme-list-alistp (set-difference-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-when-subsetp-equal (and (implies (and (subsetp-equal acl2::x acl2::y) (filepath-plexeme-list-alistp acl2::y)) (equal (filepath-plexeme-list-alistp acl2::x) (true-listp acl2::x))) (implies (and (filepath-plexeme-list-alistp acl2::y) (subsetp-equal acl2::x acl2::y)) (equal (filepath-plexeme-list-alistp acl2::x) (true-listp acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-rcons (iff (filepath-plexeme-list-alistp (rcons acl2::a acl2::x)) (and (and (consp acl2::a) (filepathp (car acl2::a)) (plexeme-listp (cdr acl2::a))) (filepath-plexeme-list-alistp (list-fix acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-append (equal (filepath-plexeme-list-alistp (append acl2::a acl2::b)) (and (filepath-plexeme-list-alistp (list-fix acl2::a)) (filepath-plexeme-list-alistp acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-rev (equal (filepath-plexeme-list-alistp (rev acl2::x)) (filepath-plexeme-list-alistp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-duplicated-members (implies (filepath-plexeme-list-alistp acl2::x) (filepath-plexeme-list-alistp (duplicated-members acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-difference (implies (filepath-plexeme-list-alistp acl2::x) (filepath-plexeme-list-alistp (difference acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-intersect-2 (implies (filepath-plexeme-list-alistp acl2::y) (filepath-plexeme-list-alistp (intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-intersect-1 (implies (filepath-plexeme-list-alistp acl2::x) (filepath-plexeme-list-alistp (intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-union (iff (filepath-plexeme-list-alistp (union acl2::x acl2::y)) (and (filepath-plexeme-list-alistp (sfix acl2::x)) (filepath-plexeme-list-alistp (sfix acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-mergesort (iff (filepath-plexeme-list-alistp (mergesort acl2::x)) (filepath-plexeme-list-alistp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-delete (implies (filepath-plexeme-list-alistp acl2::x) (filepath-plexeme-list-alistp (delete acl2::k acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-insert (iff (filepath-plexeme-list-alistp (insert acl2::a acl2::x)) (and (filepath-plexeme-list-alistp (sfix acl2::x)) (and (consp acl2::a) (filepathp (car acl2::a)) (plexeme-listp (cdr acl2::a))))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-sfix (iff (filepath-plexeme-list-alistp (sfix acl2::x)) (or (filepath-plexeme-list-alistp acl2::x) (not (setp acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-list-fix (implies (filepath-plexeme-list-alistp acl2::x) (filepath-plexeme-list-alistp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-filepath-plexeme-list-alistp-compound-recognizer (implies (filepath-plexeme-list-alistp acl2::x) (true-listp acl2::x)) :rule-classes :compound-recognizer)
Theorem:
(defthm filepath-plexeme-list-alistp-when-not-consp (implies (not (consp acl2::x)) (equal (filepath-plexeme-list-alistp acl2::x) (not acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-cdr-when-filepath-plexeme-list-alistp (implies (filepath-plexeme-list-alistp (double-rewrite acl2::x)) (filepath-plexeme-list-alistp (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-cons (equal (filepath-plexeme-list-alistp (cons acl2::a acl2::x)) (and (and (consp acl2::a) (filepathp (car acl2::a)) (plexeme-listp (cdr acl2::a))) (filepath-plexeme-list-alistp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-remove-assoc (implies (filepath-plexeme-list-alistp acl2::x) (filepath-plexeme-list-alistp (remove-assoc-equal acl2::name acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm plexeme-listp-of-cdr-of-assoc-when-filepath-plexeme-list-alistp (implies (filepath-plexeme-list-alistp acl2::x) (plexeme-listp (cdr (assoc-equal acl2::k acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-put-assoc (implies (and (filepath-plexeme-list-alistp acl2::x)) (iff (filepath-plexeme-list-alistp (put-assoc-equal acl2::name acl2::val acl2::x)) (and (filepathp acl2::name) (plexeme-listp acl2::val)))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-fast-alist-clean (implies (filepath-plexeme-list-alistp acl2::x) (filepath-plexeme-list-alistp (fast-alist-clean acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-hons-shrink-alist (implies (and (filepath-plexeme-list-alistp acl2::x) (filepath-plexeme-list-alistp acl2::y)) (filepath-plexeme-list-alistp (hons-shrink-alist acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm filepath-plexeme-list-alistp-of-hons-acons (equal (filepath-plexeme-list-alistp (hons-acons acl2::a acl2::n acl2::x)) (and (filepathp acl2::a) (plexeme-listp acl2::n) (filepath-plexeme-list-alistp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm plexeme-listp-of-cdr-of-hons-assoc-equal-when-filepath-plexeme-list-alistp (implies (filepath-plexeme-list-alistp acl2::x) (plexeme-listp (cdr (hons-assoc-equal acl2::k acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-filepath-plexeme-list-alistp-rewrite (implies (filepath-plexeme-list-alistp acl2::x) (alistp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-filepath-plexeme-list-alistp (implies (filepath-plexeme-list-alistp acl2::x) (alistp acl2::x)) :rule-classes :tau-system)
Theorem:
(defthm filepathp-of-caar-when-filepath-plexeme-list-alistp (implies (filepath-plexeme-list-alistp acl2::x) (iff (filepathp (caar acl2::x)) (consp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm plexeme-listp-of-cdar-when-filepath-plexeme-list-alistp (implies (filepath-plexeme-list-alistp acl2::x) (plexeme-listp (cdar acl2::x))) :rule-classes ((:rewrite)))