Print a binary exponent prefix.
(print-bexprefix prefix pstate) → new-pstate
Function:
(defun print-bexprefix (prefix pstate) (declare (xargs :guard (and (bexprefixp prefix) (pristatep pstate)))) (let ((__function__ 'print-bexprefix)) (declare (ignorable __function__)) (bexprefix-case prefix :locase-p (print-astring "p" pstate) :upcase-p (print-astring "P" pstate))))
Theorem:
(defthm pristatep-of-print-bexprefix (b* ((new-pstate (print-bexprefix prefix pstate))) (pristatep new-pstate)) :rule-classes :rewrite)
Theorem:
(defthm pristate->gcc-of-print-bexprefix (b* ((?new-pstate (print-bexprefix prefix pstate))) (equal (pristate->gcc new-pstate) (pristate->gcc pstate))))
Theorem:
(defthm print-bexprefix-of-bexprefix-fix-prefix (equal (print-bexprefix (bexprefix-fix prefix) pstate) (print-bexprefix prefix pstate)))
Theorem:
(defthm print-bexprefix-bexprefix-equiv-congruence-on-prefix (implies (bexprefix-equiv prefix prefix-equiv) (equal (print-bexprefix prefix pstate) (print-bexprefix prefix-equiv pstate))) :rule-classes :congruence)
Theorem:
(defthm print-bexprefix-of-pristate-fix-pstate (equal (print-bexprefix prefix (pristate-fix pstate)) (print-bexprefix prefix pstate)))
Theorem:
(defthm print-bexprefix-pristate-equiv-congruence-on-pstate (implies (pristate-equiv pstate pstate-equiv) (equal (print-bexprefix prefix pstate) (print-bexprefix prefix pstate-equiv))) :rule-classes :congruence)