• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • C
          • Syntax-for-tools
          • Atc
          • Transformation-tools
          • Language
            • Abstract-syntax
            • Integer-ranges
            • Implementation-environments
            • Dynamic-semantics
            • Static-semantics
            • Grammar
            • Types
            • Integer-formats-definitions
            • Computation-states
              • Write-object
              • Objdesign-of-var
              • Create-var
              • Compustate-scopes-numbers
              • Read-object
              • Compustate
              • Enter-scope
              • Frame
              • Exit-scope
              • Read-object-of-create-var
              • Compustate-scopes-numbers-aux
              • Compustate-option
              • Push-frame
              • Read-object-of-write-object
              • Pop-frame
              • Compustate-frames-number
              • Exit-scope-of-write-object
              • Compustate-option-result
              • Scope-list-result
              • Not-errorp-of-write-object-of-exit-scope
              • Compustate-result
              • Scope-result
              • Pop-frame-of-write-object
              • Compustate-top-frame-scopes-number
              • Not-errorp-of-write-object-of-pop-frame
              • Read-object-of-exit-scope
              • Heap
              • Top-frame
              • Read-object-of-pop-frame
              • Scope
              • Objdesign-of-var-of-create-var
              • Scope-list
                • Scope-list-fix
                • Scope-list-equiv
                • Scope-listp
                  • Scope-listp-basics
                • Push/pop/top-frame-theorems
                • Objdesign-of-var-of-write-object
                • Frame-list
                • Compustatep-of-write-object-of-objdesign-of-var
                • Valuep-of-read-object-of-objdesign-of-var
                • Read-object-of-enter-scope
                • Objdesign-of-var-of-enter-scope
                • Entr/exit-scope-theorems
              • Portable-ascii-identifiers
              • Values
              • Integer-operations
              • Object-designators
              • Operations
              • Errors
              • Tag-environments
              • Function-environments
              • Character-sets
              • Flexible-array-member-removal
              • Arithmetic-operations
              • Pointer-operations
              • Real-operations
              • Array-operations
              • Scalar-operations
              • Structure-operations
            • Representation
            • Insertion-sort
            • Pack
          • Soft
          • Bv
          • Imp-language
          • Ethereum
          • Event-macros
          • Java
          • Riscv
          • Bitcoin
          • Zcash
          • Yul
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Axe
          • Lists-light
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Scope-listp

    Scope-listp-basics

    Basic theorems about scope-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: scope-listp-of-cons

    (defthm scope-listp-of-cons
      (equal (scope-listp (cons acl2::a acl2::x))
             (and (scopep acl2::a)
                  (scope-listp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-cdr-when-scope-listp

    (defthm scope-listp-of-cdr-when-scope-listp
      (implies (scope-listp (double-rewrite acl2::x))
               (scope-listp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-when-not-consp

    (defthm scope-listp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (scope-listp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: scopep-of-car-when-scope-listp

    (defthm scopep-of-car-when-scope-listp
      (implies (scope-listp acl2::x)
               (scopep (car acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-scope-listp-compound-recognizer

    (defthm true-listp-when-scope-listp-compound-recognizer
      (implies (scope-listp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: scope-listp-of-list-fix

    (defthm scope-listp-of-list-fix
      (implies (scope-listp acl2::x)
               (scope-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-sfix

    (defthm scope-listp-of-sfix
      (iff (scope-listp (sfix acl2::x))
           (or (scope-listp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-insert

    (defthm scope-listp-of-insert
      (iff (scope-listp (insert acl2::a acl2::x))
           (and (scope-listp (sfix acl2::x))
                (scopep acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-delete

    (defthm scope-listp-of-delete
      (implies (scope-listp acl2::x)
               (scope-listp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-mergesort

    (defthm scope-listp-of-mergesort
      (iff (scope-listp (mergesort acl2::x))
           (scope-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-union

    (defthm scope-listp-of-union
      (iff (scope-listp (union acl2::x acl2::y))
           (and (scope-listp (sfix acl2::x))
                (scope-listp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-intersect-1

    (defthm scope-listp-of-intersect-1
      (implies (scope-listp acl2::x)
               (scope-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-intersect-2

    (defthm scope-listp-of-intersect-2
      (implies (scope-listp acl2::y)
               (scope-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-difference

    (defthm scope-listp-of-difference
      (implies (scope-listp acl2::x)
               (scope-listp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-duplicated-members

    (defthm scope-listp-of-duplicated-members
      (implies (scope-listp acl2::x)
               (scope-listp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-rev

    (defthm scope-listp-of-rev
      (equal (scope-listp (rev acl2::x))
             (scope-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-append

    (defthm scope-listp-of-append
      (equal (scope-listp (append acl2::a acl2::b))
             (and (scope-listp (list-fix acl2::a))
                  (scope-listp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-rcons

    (defthm scope-listp-of-rcons
      (iff (scope-listp (rcons acl2::a acl2::x))
           (and (scopep acl2::a)
                (scope-listp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: scopep-when-member-equal-of-scope-listp

    (defthm scopep-when-member-equal-of-scope-listp
      (and (implies (and (member-equal acl2::a acl2::x)
                         (scope-listp acl2::x))
                    (scopep acl2::a))
           (implies (and (scope-listp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (scopep acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-when-subsetp-equal

    (defthm scope-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (scope-listp acl2::y))
                    (equal (scope-listp acl2::x)
                           (true-listp acl2::x)))
           (implies (and (scope-listp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (scope-listp acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-set-difference-equal

    (defthm scope-listp-of-set-difference-equal
      (implies (scope-listp acl2::x)
               (scope-listp (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-intersection-equal-1

    (defthm scope-listp-of-intersection-equal-1
      (implies (scope-listp (double-rewrite acl2::x))
               (scope-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-intersection-equal-2

    (defthm scope-listp-of-intersection-equal-2
      (implies (scope-listp (double-rewrite acl2::y))
               (scope-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-union-equal

    (defthm scope-listp-of-union-equal
      (equal (scope-listp (union-equal acl2::x acl2::y))
             (and (scope-listp (list-fix acl2::x))
                  (scope-listp (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-take

    (defthm scope-listp-of-take
      (implies (scope-listp (double-rewrite acl2::x))
               (iff (scope-listp (take acl2::n acl2::x))
                    (or (scopep nil)
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-repeat

    (defthm scope-listp-of-repeat
      (iff (scope-listp (repeat acl2::n acl2::x))
           (or (scopep acl2::x) (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: scopep-of-nth-when-scope-listp

    (defthm scopep-of-nth-when-scope-listp
      (implies (scope-listp acl2::x)
               (scopep (nth acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-update-nth

    (defthm scope-listp-of-update-nth
      (implies (scope-listp (double-rewrite acl2::x))
               (iff (scope-listp (update-nth acl2::n acl2::y acl2::x))
                    (and (scopep acl2::y)
                         (or (<= (nfix acl2::n) (len acl2::x))
                             (scopep nil)))))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-butlast

    (defthm scope-listp-of-butlast
      (implies (scope-listp (double-rewrite acl2::x))
               (scope-listp (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-nthcdr

    (defthm scope-listp-of-nthcdr
      (implies (scope-listp (double-rewrite acl2::x))
               (scope-listp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-last

    (defthm scope-listp-of-last
      (implies (scope-listp (double-rewrite acl2::x))
               (scope-listp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-remove

    (defthm scope-listp-of-remove
      (implies (scope-listp acl2::x)
               (scope-listp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: scope-listp-of-revappend

    (defthm scope-listp-of-revappend
      (equal (scope-listp (revappend acl2::x acl2::y))
             (and (scope-listp (list-fix acl2::x))
                  (scope-listp acl2::y)))
      :rule-classes ((:rewrite)))