Get the nondigit field from a pnumber-number-nondigit.
(pnumber-number-nondigit->nondigit x) → nondigit
This is an ordinary field accessor created by fty::defprod.
Function:
(defun pnumber-number-nondigit->nondigit$inline (x) (declare (xargs :guard (pnumberp x))) (declare (xargs :guard (equal (pnumber-kind x) :number-nondigit))) (mbe :logic (b* ((x (and (equal (pnumber-kind x) :number-nondigit) x)) (number (pnumber-fix (std::da-nth 0 (cdr x)))) (nondigit (acl2::char-fix (std::da-nth 1 (cdr x))))) (if (str::letter/uscore-char-p nondigit) nondigit #\_)) :exec (std::da-nth 1 (cdr x))))
Theorem:
(defthm characterp-of-pnumber-number-nondigit->nondigit (b* ((nondigit (pnumber-number-nondigit->nondigit$inline x))) (characterp nondigit)) :rule-classes :rewrite)
Theorem:
(defthm pnumber-number-nondigit->nondigit$inline-of-pnumber-fix-x (equal (pnumber-number-nondigit->nondigit$inline (pnumber-fix x)) (pnumber-number-nondigit->nondigit$inline x)))
Theorem:
(defthm pnumber-number-nondigit->nondigit$inline-pnumber-equiv-congruence-on-x (implies (pnumber-equiv x x-equiv) (equal (pnumber-number-nondigit->nondigit$inline x) (pnumber-number-nondigit->nondigit$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm pnumber-number-nondigit->nondigit-when-wrong-kind (implies (not (equal (pnumber-kind x) :number-nondigit)) (equal (pnumber-number-nondigit->nondigit x) (b* ((x nil) (number (pnumber-fix (std::da-nth 0 (cdr x)))) (nondigit (acl2::char-fix (std::da-nth 1 (cdr x))))) (if (str::letter/uscore-char-p nondigit) nondigit #\_)))))