(ppstate->size ppstate) → size
Function:
(defun ppstate->size (ppstate) (declare (xargs :stobjs (ppstate))) (declare (xargs :guard t)) (mbe :logic (if (ppstatep ppstate) (raw-ppstate->size ppstate) 0) :exec (raw-ppstate->size ppstate)))
Theorem:
(defthm natp-of-ppstate->size (b* ((size (ppstate->size ppstate))) (natp size)) :rule-classes (:rewrite :type-prescription))
Theorem:
(defthm ppstate->size-of-ppstate-fix-ppstate (equal (ppstate->size (ppstate-fix ppstate)) (ppstate->size ppstate)))
Theorem:
(defthm ppstate->size-ppstate-equiv-congruence-on-ppstate (implies (ppstate-equiv ppstate ppstate-equiv) (equal (ppstate->size ppstate) (ppstate->size ppstate-equiv))) :rule-classes :congruence)