(ppstate->macros ppstate) → macros
Function:
(defun ppstate->macros (ppstate) (declare (xargs :stobjs (ppstate))) (declare (xargs :guard t)) (mbe :logic (if (ppstatep ppstate) (raw-ppstate->macros ppstate) (macro-table-init)) :exec (raw-ppstate->macros ppstate)))
Theorem:
(defthm macro-tablep-of-ppstate->macros (b* ((macros (ppstate->macros ppstate))) (macro-tablep macros)) :rule-classes :rewrite)
Theorem:
(defthm ppstate->macros-of-ppstate-fix-ppstate (equal (ppstate->macros (ppstate-fix ppstate)) (ppstate->macros ppstate)))
Theorem:
(defthm ppstate->macros-ppstate-equiv-congruence-on-ppstate (implies (ppstate-equiv ppstate ppstate-equiv) (equal (ppstate->macros ppstate) (ppstate->macros ppstate-equiv))) :rule-classes :congruence)