Update the |X86ISA|::|R-W-X| field of a tlb-key bit structure.
Function:
(defun !tlb-key->r-w-x$inline (r-w-x x) (declare (xargs :guard (and (2bits-p r-w-x) (tlb-key-p x)))) (mbe :logic (b* ((r-w-x (mbe :logic (2bits-fix r-w-x) :exec r-w-x)) (x (tlb-key-fix x))) (part-install r-w-x x :width 2 :low 6)) :exec (the (unsigned-byte 46) (logior (the (unsigned-byte 46) (logand (the (unsigned-byte 46) x) (the (signed-byte 9) -193))) (the (unsigned-byte 8) (ash (the (unsigned-byte 2) r-w-x) 6))))))
Theorem:
(defthm tlb-key-p-of-!tlb-key->r-w-x (b* ((new-x (!tlb-key->r-w-x$inline r-w-x x))) (tlb-key-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !tlb-key->r-w-x$inline-of-2bits-fix-r-w-x (equal (!tlb-key->r-w-x$inline (2bits-fix r-w-x) x) (!tlb-key->r-w-x$inline r-w-x x)))
Theorem:
(defthm !tlb-key->r-w-x$inline-2bits-equiv-congruence-on-r-w-x (implies (2bits-equiv r-w-x r-w-x-equiv) (equal (!tlb-key->r-w-x$inline r-w-x x) (!tlb-key->r-w-x$inline r-w-x-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !tlb-key->r-w-x$inline-of-tlb-key-fix-x (equal (!tlb-key->r-w-x$inline r-w-x (tlb-key-fix x)) (!tlb-key->r-w-x$inline r-w-x x)))
Theorem:
(defthm !tlb-key->r-w-x$inline-tlb-key-equiv-congruence-on-x (implies (tlb-key-equiv x x-equiv) (equal (!tlb-key->r-w-x$inline r-w-x x) (!tlb-key->r-w-x$inline r-w-x x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !tlb-key->r-w-x-is-tlb-key (equal (!tlb-key->r-w-x r-w-x x) (change-tlb-key x :r-w-x r-w-x)))
Theorem:
(defthm tlb-key->r-w-x-of-!tlb-key->r-w-x (b* ((?new-x (!tlb-key->r-w-x$inline r-w-x x))) (equal (tlb-key->r-w-x new-x) (2bits-fix r-w-x))))
Theorem:
(defthm !tlb-key->r-w-x-equiv-under-mask (b* ((?new-x (!tlb-key->r-w-x$inline r-w-x x))) (tlb-key-equiv-under-mask new-x x -193)))