(fgl-object-bindings-bfrs-ok x &optional (bfrstate 'bfrstate)) → *
Function:
(defun fgl-object-bindings-bfrs-ok-fn (x bfrstate) (declare (xargs :guard (and (fgl-object-bindings-p x) (bfrstate-p bfrstate)))) (let ((__function__ 'fgl-object-bindings-bfrs-ok)) (declare (ignorable __function__)) (if (atom x) t (and (or (not (mbt (and (consp (car x)) (pseudo-var-p (caar x))))) (fgl-object-bfrs-ok (cdar x))) (fgl-object-bindings-bfrs-ok (cdr x))))))
Theorem:
(defthm fgl-object-bindings-bfrs-ok-fn-of-fgl-object-bindings-fix-x (equal (fgl-object-bindings-bfrs-ok-fn (fgl-object-bindings-fix x) bfrstate) (fgl-object-bindings-bfrs-ok-fn x bfrstate)))
Theorem:
(defthm fgl-object-bindings-bfrs-ok-fn-fgl-object-bindings-equiv-congruence-on-x (implies (fgl-object-bindings-equiv x x-equiv) (equal (fgl-object-bindings-bfrs-ok-fn x bfrstate) (fgl-object-bindings-bfrs-ok-fn x-equiv bfrstate))) :rule-classes :congruence)
Theorem:
(defthm fgl-object-bindings-bfrs-ok-fn-of-bfrstate-fix-bfrstate (equal (fgl-object-bindings-bfrs-ok-fn x (bfrstate-fix bfrstate)) (fgl-object-bindings-bfrs-ok-fn x bfrstate)))
Theorem:
(defthm fgl-object-bindings-bfrs-ok-fn-bfrstate-equiv-congruence-on-bfrstate (implies (bfrstate-equiv bfrstate bfrstate-equiv) (equal (fgl-object-bindings-bfrs-ok-fn x bfrstate) (fgl-object-bindings-bfrs-ok-fn x bfrstate-equiv))) :rule-classes :congruence)