• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
      • B*
      • Defunc
      • Fty
      • Apt
      • Std/util
      • Defdata
      • Defrstobj
      • Seq
      • Match-tree
      • Defrstobj
      • With-supporters
      • Def-partial-measure
      • Template-subst
      • Soft
      • Defthm-domain
      • Event-macros
        • Evmac-input-hints-p
        • Evmac-input-print-p
        • Event-macro-input-processing
        • Function-definedness
        • Event-macro-screen-printing
        • Make-event-terse
        • Event-macro-applicability-conditions
          • Evmac-input-hints-p
          • Event-macro-applicability-condition-utilities
            • Evmac-appcond-theorem
            • Evmac-appcond-theorem-list
            • Evmac-appcondp
            • Evmac-ensure-no-extra-hints
            • Make-evmac-appcond?
            • Evmac-appcond-theorems-no-extra-hints
            • Evmac-appcond-listp
              • Evmac-appcond-listp-basics
          • Event-macro-results
          • Template-generators
          • Event-macro-event-generators
          • Event-macro-proof-preparation
          • Try-event
          • Restore-output?
          • Restore-output
          • Fail-event
          • Cw-event
          • Event-macro-xdoc-constructors
          • Event-macro-intro-macros
        • Def-universal-equiv
        • Def-saved-obligs
        • With-supporters-after
        • Definec
        • Sig
        • Outer-local
        • Data-structures
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Evmac-appcond-listp

    Evmac-appcond-listp-basics

    Basic theorems about evmac-appcond-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: evmac-appcond-listp-of-cons

    (defthm evmac-appcond-listp-of-cons
      (equal (evmac-appcond-listp (cons a x))
             (and (evmac-appcondp a)
                  (evmac-appcond-listp x)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-cdr-when-evmac-appcond-listp

    (defthm evmac-appcond-listp-of-cdr-when-evmac-appcond-listp
      (implies (evmac-appcond-listp (double-rewrite x))
               (evmac-appcond-listp (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-when-not-consp

    (defthm evmac-appcond-listp-when-not-consp
      (implies (not (consp x))
               (equal (evmac-appcond-listp x) (not x)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcondp-of-car-when-evmac-appcond-listp

    (defthm evmac-appcondp-of-car-when-evmac-appcond-listp
      (implies (evmac-appcond-listp x)
               (iff (evmac-appcondp (car x))
                    (consp x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-evmac-appcond-listp-compound-recognizer

    (defthm true-listp-when-evmac-appcond-listp-compound-recognizer
      (implies (evmac-appcond-listp x)
               (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: evmac-appcond-listp-of-list-fix

    (defthm evmac-appcond-listp-of-list-fix
      (implies (evmac-appcond-listp x)
               (evmac-appcond-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-sfix

    (defthm evmac-appcond-listp-of-sfix
      (iff (evmac-appcond-listp (set::sfix x))
           (or (evmac-appcond-listp x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-insert

    (defthm evmac-appcond-listp-of-insert
      (iff (evmac-appcond-listp (set::insert a x))
           (and (evmac-appcond-listp (set::sfix x))
                (evmac-appcondp a)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-delete

    (defthm evmac-appcond-listp-of-delete
      (implies (evmac-appcond-listp x)
               (evmac-appcond-listp (set::delete k x)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-mergesort

    (defthm evmac-appcond-listp-of-mergesort
      (iff (evmac-appcond-listp (set::mergesort x))
           (evmac-appcond-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-union

    (defthm evmac-appcond-listp-of-union
      (iff (evmac-appcond-listp (set::union x y))
           (and (evmac-appcond-listp (set::sfix x))
                (evmac-appcond-listp (set::sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-intersect-1

    (defthm evmac-appcond-listp-of-intersect-1
      (implies (evmac-appcond-listp x)
               (evmac-appcond-listp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-intersect-2

    (defthm evmac-appcond-listp-of-intersect-2
      (implies (evmac-appcond-listp y)
               (evmac-appcond-listp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-difference

    (defthm evmac-appcond-listp-of-difference
      (implies (evmac-appcond-listp x)
               (evmac-appcond-listp (set::difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-duplicated-members

    (defthm evmac-appcond-listp-of-duplicated-members
      (implies (evmac-appcond-listp x)
               (evmac-appcond-listp (duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-rev

    (defthm evmac-appcond-listp-of-rev
      (equal (evmac-appcond-listp (rev x))
             (evmac-appcond-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-append

    (defthm evmac-appcond-listp-of-append
      (equal (evmac-appcond-listp (append a b))
             (and (evmac-appcond-listp (list-fix a))
                  (evmac-appcond-listp b)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-rcons

    (defthm evmac-appcond-listp-of-rcons
      (iff (evmac-appcond-listp (rcons a x))
           (and (evmac-appcondp a)
                (evmac-appcond-listp (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcondp-when-member-equal-of-evmac-appcond-listp

    (defthm evmac-appcondp-when-member-equal-of-evmac-appcond-listp
      (and (implies (and (member-equal a x)
                         (evmac-appcond-listp x))
                    (evmac-appcondp a))
           (implies (and (evmac-appcond-listp x)
                         (member-equal a x))
                    (evmac-appcondp a)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-when-subsetp-equal

    (defthm evmac-appcond-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (evmac-appcond-listp y))
                    (equal (evmac-appcond-listp x)
                           (true-listp x)))
           (implies (and (evmac-appcond-listp y)
                         (subsetp-equal x y))
                    (equal (evmac-appcond-listp x)
                           (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-set-difference-equal

    (defthm evmac-appcond-listp-of-set-difference-equal
      (implies (evmac-appcond-listp x)
               (evmac-appcond-listp (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-intersection-equal-1

    (defthm evmac-appcond-listp-of-intersection-equal-1
      (implies (evmac-appcond-listp (double-rewrite x))
               (evmac-appcond-listp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-intersection-equal-2

    (defthm evmac-appcond-listp-of-intersection-equal-2
      (implies (evmac-appcond-listp (double-rewrite y))
               (evmac-appcond-listp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-union-equal

    (defthm evmac-appcond-listp-of-union-equal
      (equal (evmac-appcond-listp (union-equal x y))
             (and (evmac-appcond-listp (list-fix x))
                  (evmac-appcond-listp (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-take

    (defthm evmac-appcond-listp-of-take
      (implies (evmac-appcond-listp (double-rewrite x))
               (iff (evmac-appcond-listp (take n x))
                    (or (evmac-appcondp nil)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-repeat

    (defthm evmac-appcond-listp-of-repeat
      (iff (evmac-appcond-listp (repeat n x))
           (or (evmac-appcondp x) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcondp-of-nth-when-evmac-appcond-listp

    (defthm evmac-appcondp-of-nth-when-evmac-appcond-listp
      (implies (evmac-appcond-listp x)
               (iff (evmac-appcondp (nth n x))
                    (< (nfix n) (len x))))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-update-nth

    (defthm evmac-appcond-listp-of-update-nth
      (implies (evmac-appcond-listp (double-rewrite x))
               (iff (evmac-appcond-listp (update-nth n y x))
                    (and (evmac-appcondp y)
                         (or (<= (nfix n) (len x))
                             (evmac-appcondp nil)))))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-butlast

    (defthm evmac-appcond-listp-of-butlast
      (implies (evmac-appcond-listp (double-rewrite x))
               (evmac-appcond-listp (butlast x n)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-nthcdr

    (defthm evmac-appcond-listp-of-nthcdr
      (implies (evmac-appcond-listp (double-rewrite x))
               (evmac-appcond-listp (nthcdr n x)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-last

    (defthm evmac-appcond-listp-of-last
      (implies (evmac-appcond-listp (double-rewrite x))
               (evmac-appcond-listp (last x)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-remove

    (defthm evmac-appcond-listp-of-remove
      (implies (evmac-appcond-listp x)
               (evmac-appcond-listp (remove a x)))
      :rule-classes ((:rewrite)))

    Theorem: evmac-appcond-listp-of-revappend

    (defthm evmac-appcond-listp-of-revappend
      (equal (evmac-appcond-listp (revappend x y))
             (and (evmac-appcond-listp (list-fix x))
                  (evmac-appcond-listp y)))
      :rule-classes ((:rewrite)))