• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
      • B*
      • Defunc
      • Fty
        • Deftagsum
        • Defprod
        • Defflexsum
        • Defbitstruct
        • Deflist
        • Defalist
        • Defbyte
        • Defresult
        • Deffixequiv
        • Deffixtype
        • Defoption
        • Fty-discipline
        • Fold
        • Specific-types
        • Fty-extensions
        • Defsubtype
        • Deftypes
        • Defset
        • Defflatsum
        • Deflist-of-len
        • Defomap
        • Defbytelist
        • Fty::basetypes
        • Defvisitors
        • Deffixtype-alias
        • Deffixequiv-sk
        • Defunit
        • Multicase
        • Deffixequiv-mutual
        • Fty::baselists
          • Symbol-list
          • True-list-list
          • Nat-list
          • Rational-list
          • Integer-list
          • Boolean-list
          • ACL2-number-list
            • ACL2-number-list-fix
            • ACL2-number-list-equiv
          • Def-enumcase
          • Defmap
        • Apt
        • Std/util
        • Defdata
        • Defrstobj
        • Seq
        • Match-tree
        • Defrstobj
        • With-supporters
        • Def-partial-measure
        • Template-subst
        • Soft
        • Defthm-domain
        • Event-macros
        • Def-universal-equiv
        • Def-saved-obligs
        • With-supporters-after
        • Definec
        • Sig
        • Outer-local
        • Data-structures
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • ACL2-number-list

    ACL2-number-list-equiv

    Basic equivalence relation for ACL2-number-list structures.

    Definitions and Theorems

    Function: acl2-number-list-equiv$inline

    (defun acl2-number-list-equiv$inline (x y)
      (declare (xargs :guard (and (acl2-number-listp x)
                                  (acl2-number-listp y))))
      (equal (acl2-number-list-fix x)
             (acl2-number-list-fix y)))

    Theorem: acl2-number-list-equiv-is-an-equivalence

    (defthm acl2-number-list-equiv-is-an-equivalence
      (and (booleanp (acl2-number-list-equiv x y))
           (acl2-number-list-equiv x x)
           (implies (acl2-number-list-equiv x y)
                    (acl2-number-list-equiv y x))
           (implies (and (acl2-number-list-equiv x y)
                         (acl2-number-list-equiv y z))
                    (acl2-number-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: acl2-number-list-equiv-implies-equal-acl2-number-list-fix-1

    (defthm acl2-number-list-equiv-implies-equal-acl2-number-list-fix-1
      (implies (acl2-number-list-equiv x x-equiv)
               (equal (acl2-number-list-fix x)
                      (acl2-number-list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: acl2-number-list-fix-under-acl2-number-list-equiv

    (defthm acl2-number-list-fix-under-acl2-number-list-equiv
      (acl2-number-list-equiv (acl2-number-list-fix x)
                              x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-acl2-number-list-fix-1-forward-to-acl2-number-list-equiv

    (defthm
      equal-of-acl2-number-list-fix-1-forward-to-acl2-number-list-equiv
      (implies (equal (acl2-number-list-fix x) y)
               (acl2-number-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-acl2-number-list-fix-2-forward-to-acl2-number-list-equiv

    (defthm
      equal-of-acl2-number-list-fix-2-forward-to-acl2-number-list-equiv
      (implies (equal x (acl2-number-list-fix y))
               (acl2-number-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: acl2-number-list-equiv-of-acl2-number-list-fix-1-forward

    (defthm acl2-number-list-equiv-of-acl2-number-list-fix-1-forward
      (implies (acl2-number-list-equiv (acl2-number-list-fix x)
                                       y)
               (acl2-number-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: acl2-number-list-equiv-of-acl2-number-list-fix-2-forward

    (defthm acl2-number-list-equiv-of-acl2-number-list-fix-2-forward
      (implies (acl2-number-list-equiv x (acl2-number-list-fix y))
               (acl2-number-list-equiv x y))
      :rule-classes :forward-chaining)