• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
          • Member
          • Append
          • List
          • Nth
          • Len
          • True-listp
          • String-listp
          • Nat-listp
          • Character-listp
          • Symbol-listp
          • True-list-listp
          • Length
          • Search
          • Intersection$
          • Union$
          • Remove-duplicates
          • Position
          • Update-nth
          • Take
          • Set-difference$
          • Nthcdr
          • Subsetp
          • No-duplicatesp
          • Concatenate
          • Remove
          • Remove1
          • Intersectp
          • Endp
          • Keyword-value-listp
          • Integer-listp
          • Reverse
          • Add-to-set
          • List-utilities
          • Set-size
          • Revappend
          • Subseq
          • Make-list
          • Lists-light
          • Boolean-listp
          • Butlast
          • Pairlis$
          • Substitute
          • Count
          • Keyword-listp
          • List*
          • Last
          • Eqlable-listp
          • Integer-range-listp
          • Rational-listp
          • Pos-listp
            • Pos-list
            • Evens
            • Atom-listp
            • ACL2-number-listp
            • Typed-list-utilities
            • Odds
            • List$
            • Listp
            • Standard-char-listp
            • Last-cdr
            • Pairlis
            • Proper-consp
            • Improper-consp
            • Pairlis-x2
            • Pairlis-x1
            • Merge-sort-lexorder
            • Fix-true-list
            • Real-listp
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Miscellaneous
        • Output-controls
        • Bdd
        • Macros
        • Installation
        • Mailing-lists
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Fty-extensions
    • Specific-types
    • Pos-listp

    Pos-list

    Fixtype of lists of positive integers.

    Definitions and Theorems

    Theorem: pos-listp-of-cons

    (defthm pos-listp-of-cons
      (equal (pos-listp (cons a x))
             (and (posp a) (pos-listp x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-cdr-when-pos-listp

    (defthm pos-listp-of-cdr-when-pos-listp
      (implies (pos-listp (double-rewrite x))
               (pos-listp (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-when-not-consp

    (defthm pos-listp-when-not-consp
      (implies (not (consp x))
               (equal (pos-listp x) (not x)))
      :rule-classes ((:rewrite)))

    Theorem: posp-of-car-when-pos-listp

    (defthm posp-of-car-when-pos-listp
      (implies (pos-listp x)
               (iff (posp (car x)) (consp x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-pos-listp-compound-recognizer

    (defthm true-listp-when-pos-listp-compound-recognizer
      (implies (pos-listp x) (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: pos-listp-of-list-fix

    (defthm pos-listp-of-list-fix
      (implies (pos-listp x)
               (pos-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-rev

    (defthm pos-listp-of-rev
      (equal (pos-listp (rev x))
             (pos-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Function: pos-list-fix$inline

    (defun pos-list-fix$inline (x)
      (declare (xargs :guard (pos-listp x)))
      (let ((__function__ 'pos-list-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 nil
               (cons (pos-fix (car x))
                     (pos-list-fix (cdr x))))
             :exec x)))

    Theorem: pos-listp-of-pos-list-fix

    (defthm pos-listp-of-pos-list-fix
      (b* ((fty::newx (pos-list-fix$inline x)))
        (pos-listp fty::newx))
      :rule-classes :rewrite)

    Theorem: pos-list-fix-when-pos-listp

    (defthm pos-list-fix-when-pos-listp
      (implies (pos-listp x)
               (equal (pos-list-fix x) x)))

    Function: pos-list-equiv$inline

    (defun pos-list-equiv$inline (x y)
      (declare (xargs :guard (and (pos-listp x) (pos-listp y))))
      (equal (pos-list-fix x)
             (pos-list-fix y)))

    Theorem: pos-list-equiv-is-an-equivalence

    (defthm pos-list-equiv-is-an-equivalence
      (and (booleanp (pos-list-equiv x y))
           (pos-list-equiv x x)
           (implies (pos-list-equiv x y)
                    (pos-list-equiv y x))
           (implies (and (pos-list-equiv x y)
                         (pos-list-equiv y z))
                    (pos-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: pos-list-equiv-implies-equal-pos-list-fix-1

    (defthm pos-list-equiv-implies-equal-pos-list-fix-1
      (implies (pos-list-equiv x x-equiv)
               (equal (pos-list-fix x)
                      (pos-list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: pos-list-fix-under-pos-list-equiv

    (defthm pos-list-fix-under-pos-list-equiv
      (pos-list-equiv (pos-list-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-pos-list-fix-1-forward-to-pos-list-equiv

    (defthm equal-of-pos-list-fix-1-forward-to-pos-list-equiv
      (implies (equal (pos-list-fix x) y)
               (pos-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-pos-list-fix-2-forward-to-pos-list-equiv

    (defthm equal-of-pos-list-fix-2-forward-to-pos-list-equiv
      (implies (equal x (pos-list-fix y))
               (pos-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: pos-list-equiv-of-pos-list-fix-1-forward

    (defthm pos-list-equiv-of-pos-list-fix-1-forward
      (implies (pos-list-equiv (pos-list-fix x) y)
               (pos-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: pos-list-equiv-of-pos-list-fix-2-forward

    (defthm pos-list-equiv-of-pos-list-fix-2-forward
      (implies (pos-list-equiv x (pos-list-fix y))
               (pos-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: car-of-pos-list-fix-x-under-pos-equiv

    (defthm car-of-pos-list-fix-x-under-pos-equiv
      (pos-equiv (car (pos-list-fix x))
                 (car x)))

    Theorem: car-pos-list-equiv-congruence-on-x-under-pos-equiv

    (defthm car-pos-list-equiv-congruence-on-x-under-pos-equiv
      (implies (pos-list-equiv x x-equiv)
               (pos-equiv (car x) (car x-equiv)))
      :rule-classes :congruence)

    Theorem: cdr-of-pos-list-fix-x-under-pos-list-equiv

    (defthm cdr-of-pos-list-fix-x-under-pos-list-equiv
      (pos-list-equiv (cdr (pos-list-fix x))
                      (cdr x)))

    Theorem: cdr-pos-list-equiv-congruence-on-x-under-pos-list-equiv

    (defthm cdr-pos-list-equiv-congruence-on-x-under-pos-list-equiv
      (implies (pos-list-equiv x x-equiv)
               (pos-list-equiv (cdr x) (cdr x-equiv)))
      :rule-classes :congruence)

    Theorem: cons-of-pos-fix-x-under-pos-list-equiv

    (defthm cons-of-pos-fix-x-under-pos-list-equiv
      (pos-list-equiv (cons (pos-fix x) y)
                      (cons x y)))

    Theorem: cons-pos-equiv-congruence-on-x-under-pos-list-equiv

    (defthm cons-pos-equiv-congruence-on-x-under-pos-list-equiv
      (implies (pos-equiv x x-equiv)
               (pos-list-equiv (cons x y)
                               (cons x-equiv y)))
      :rule-classes :congruence)

    Theorem: cons-of-pos-list-fix-y-under-pos-list-equiv

    (defthm cons-of-pos-list-fix-y-under-pos-list-equiv
      (pos-list-equiv (cons x (pos-list-fix y))
                      (cons x y)))

    Theorem: cons-pos-list-equiv-congruence-on-y-under-pos-list-equiv

    (defthm cons-pos-list-equiv-congruence-on-y-under-pos-list-equiv
      (implies (pos-list-equiv y y-equiv)
               (pos-list-equiv (cons x y)
                               (cons x y-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-pos-list-fix

    (defthm consp-of-pos-list-fix
      (equal (consp (pos-list-fix x))
             (consp x)))

    Theorem: pos-list-fix-under-iff

    (defthm pos-list-fix-under-iff
      (iff (pos-list-fix x) (consp x)))

    Theorem: pos-list-fix-of-cons

    (defthm pos-list-fix-of-cons
      (equal (pos-list-fix (cons a x))
             (cons (pos-fix a) (pos-list-fix x))))

    Theorem: len-of-pos-list-fix

    (defthm len-of-pos-list-fix
      (equal (len (pos-list-fix x)) (len x)))

    Theorem: pos-list-fix-of-append

    (defthm pos-list-fix-of-append
      (equal (pos-list-fix (append std::a std::b))
             (append (pos-list-fix std::a)
                     (pos-list-fix std::b))))

    Theorem: pos-list-fix-of-repeat

    (defthm pos-list-fix-of-repeat
      (equal (pos-list-fix (repeat n x))
             (repeat n (pos-fix x))))

    Theorem: list-equiv-refines-pos-list-equiv

    (defthm list-equiv-refines-pos-list-equiv
      (implies (list-equiv x y)
               (pos-list-equiv x y))
      :rule-classes :refinement)

    Theorem: nth-of-pos-list-fix

    (defthm nth-of-pos-list-fix
      (equal (nth n (pos-list-fix x))
             (if (< (nfix n) (len x))
                 (pos-fix (nth n x))
               nil)))

    Theorem: pos-list-equiv-implies-pos-list-equiv-append-1

    (defthm pos-list-equiv-implies-pos-list-equiv-append-1
      (implies (pos-list-equiv x fty::x-equiv)
               (pos-list-equiv (append x y)
                               (append fty::x-equiv y)))
      :rule-classes (:congruence))

    Theorem: pos-list-equiv-implies-pos-list-equiv-append-2

    (defthm pos-list-equiv-implies-pos-list-equiv-append-2
      (implies (pos-list-equiv y fty::y-equiv)
               (pos-list-equiv (append x y)
                               (append x fty::y-equiv)))
      :rule-classes (:congruence))

    Theorem: pos-list-equiv-implies-pos-list-equiv-nthcdr-2

    (defthm pos-list-equiv-implies-pos-list-equiv-nthcdr-2
      (implies (pos-list-equiv l l-equiv)
               (pos-list-equiv (nthcdr n l)
                               (nthcdr n l-equiv)))
      :rule-classes (:congruence))

    Theorem: pos-list-equiv-implies-pos-list-equiv-take-2

    (defthm pos-list-equiv-implies-pos-list-equiv-take-2
      (implies (pos-list-equiv l l-equiv)
               (pos-list-equiv (take n l)
                               (take n l-equiv)))
      :rule-classes (:congruence))