• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
          • Member
          • Append
          • List
          • Nth
          • Len
          • True-listp
            • True-list-listp
              • Theorems-about-true-list-lists
                • True-list-listp-basics
              • List-fix
              • True-list-fix
              • The-true-list
              • Std/lists/true-listp
            • String-listp
            • Nat-listp
            • Character-listp
            • Symbol-listp
            • True-list-listp
              • Theorems-about-true-list-lists
                • True-list-listp-basics
              • Length
              • Search
              • Intersection$
              • Union$
              • Remove-duplicates
              • Position
              • Update-nth
              • Take
              • Set-difference$
              • Nthcdr
              • Subsetp
              • No-duplicatesp
              • Concatenate
              • Remove
              • Remove1
              • Intersectp
              • Endp
              • Keyword-value-listp
              • Integer-listp
              • Reverse
              • Add-to-set
              • List-utilities
              • Set-size
              • Revappend
              • Subseq
              • Make-list
              • Lists-light
              • Boolean-listp
              • Butlast
              • Pairlis$
              • Substitute
              • Count
              • Keyword-listp
              • List*
              • Last
              • Eqlable-listp
              • Integer-range-listp
              • Rational-listp
              • Pos-listp
              • Evens
              • Atom-listp
              • ACL2-number-listp
              • Typed-list-utilities
              • Odds
              • List$
              • Listp
              • Standard-char-listp
              • Last-cdr
              • Pairlis
              • Proper-consp
              • Improper-consp
              • Pairlis-x2
              • Pairlis-x1
              • Merge-sort-lexorder
              • Fix-true-list
              • Real-listp
            • Invariant-risk
            • Errors
            • Defabbrev
            • Conses
            • Alists
            • Set-register-invariant-risk
            • Strings
            • Program-wrapper
            • Get-internal-time
            • Basics
            • Packages
            • Oracle-eval
            • Defmacro-untouchable
            • <<
            • Primitive
            • Revert-world
            • Unmemoize
            • Set-duplicate-keys-action
            • Symbols
            • Def-list-constructor
            • Easy-simplify-term
            • Defiteration
            • Fake-oracle-eval
            • Defopen
            • Sleep
          • Operational-semantics
          • Real
          • Start-here
          • Miscellaneous
          • Output-controls
          • Bdd
          • Macros
          • Installation
          • Mailing-lists
        • Interfacing-tools
        • Hardware-verification
        • Software-verification
        • Math
        • Testing-utilities
      • Kestrel-utilities
      • True-list-listp
      • Std/typed-lists

      Theorems-about-true-list-lists

      Theorems about true lists of true lists.

      These are generated via std::deflist.

      Definitions and Theorems

      Theorem: true-list-listp-of-cons

      (defthm true-list-listp-of-cons
        (equal (true-list-listp (cons a x))
               (and (true-listp a)
                    (true-list-listp x)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-cdr-when-true-list-listp

      (defthm true-list-listp-of-cdr-when-true-list-listp
        (implies (true-list-listp (double-rewrite x))
                 (true-list-listp (cdr x)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-when-not-consp

      (defthm true-list-listp-when-not-consp
        (implies (not (consp x))
                 (equal (true-list-listp x) (not x)))
        :rule-classes ((:rewrite)))

      Theorem: true-listp-of-car-when-true-list-listp

      (defthm true-listp-of-car-when-true-list-listp
        (implies (true-list-listp x)
                 (true-listp (car x)))
        :rule-classes ((:rewrite)))

      Theorem: true-listp-when-true-list-listp-compound-recognizer

      (defthm true-listp-when-true-list-listp-compound-recognizer
        (implies (true-list-listp x)
                 (true-listp x))
        :rule-classes :compound-recognizer)

      Theorem: true-list-listp-of-list-fix

      (defthm true-list-listp-of-list-fix
        (implies (true-list-listp x)
                 (true-list-listp (list-fix x)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-sfix

      (defthm true-list-listp-of-sfix
        (iff (true-list-listp (set::sfix x))
             (or (true-list-listp x)
                 (not (set::setp x))))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-insert

      (defthm true-list-listp-of-insert
        (iff (true-list-listp (set::insert a x))
             (and (true-list-listp (set::sfix x))
                  (true-listp a)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-delete

      (defthm true-list-listp-of-delete
        (implies (true-list-listp x)
                 (true-list-listp (set::delete k x)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-mergesort

      (defthm true-list-listp-of-mergesort
        (iff (true-list-listp (set::mergesort x))
             (true-list-listp (list-fix x)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-union

      (defthm true-list-listp-of-union
        (iff (true-list-listp (set::union x y))
             (and (true-list-listp (set::sfix x))
                  (true-list-listp (set::sfix y))))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-intersect-1

      (defthm true-list-listp-of-intersect-1
        (implies (true-list-listp x)
                 (true-list-listp (set::intersect x y)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-intersect-2

      (defthm true-list-listp-of-intersect-2
        (implies (true-list-listp y)
                 (true-list-listp (set::intersect x y)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-difference

      (defthm true-list-listp-of-difference
        (implies (true-list-listp x)
                 (true-list-listp (set::difference x y)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-duplicated-members

      (defthm true-list-listp-of-duplicated-members
        (implies (true-list-listp x)
                 (true-list-listp (duplicated-members x)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-rev

      (defthm true-list-listp-of-rev
        (equal (true-list-listp (rev x))
               (true-list-listp (list-fix x)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-append

      (defthm true-list-listp-of-append
        (equal (true-list-listp (append a b))
               (and (true-list-listp (list-fix a))
                    (true-list-listp b)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-rcons

      (defthm true-list-listp-of-rcons
        (iff (true-list-listp (rcons a x))
             (and (true-listp a)
                  (true-list-listp (list-fix x))))
        :rule-classes ((:rewrite)))

      Theorem: true-listp-when-member-equal-of-true-list-listp

      (defthm true-listp-when-member-equal-of-true-list-listp
        (and (implies (and (member-equal a x)
                           (true-list-listp x))
                      (true-listp a))
             (implies (and (true-list-listp x)
                           (member-equal a x))
                      (true-listp a)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-when-subsetp-equal

      (defthm true-list-listp-when-subsetp-equal
        (and (implies (and (subsetp-equal x y)
                           (true-list-listp y))
                      (equal (true-list-listp x)
                             (true-listp x)))
             (implies (and (true-list-listp y)
                           (subsetp-equal x y))
                      (equal (true-list-listp x)
                             (true-listp x))))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-set-difference-equal

      (defthm true-list-listp-of-set-difference-equal
        (implies (true-list-listp x)
                 (true-list-listp (set-difference-equal x y)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-intersection-equal-1

      (defthm true-list-listp-of-intersection-equal-1
        (implies (true-list-listp (double-rewrite x))
                 (true-list-listp (intersection-equal x y)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-intersection-equal-2

      (defthm true-list-listp-of-intersection-equal-2
        (implies (true-list-listp (double-rewrite y))
                 (true-list-listp (intersection-equal x y)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-union-equal

      (defthm true-list-listp-of-union-equal
        (equal (true-list-listp (union-equal x y))
               (and (true-list-listp (list-fix x))
                    (true-list-listp (double-rewrite y))))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-take

      (defthm true-list-listp-of-take
        (implies (true-list-listp (double-rewrite x))
                 (iff (true-list-listp (take n x))
                      (or (true-listp nil)
                          (<= (nfix n) (len x)))))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-repeat

      (defthm true-list-listp-of-repeat
        (iff (true-list-listp (repeat n x))
             (or (true-listp x) (zp n)))
        :rule-classes ((:rewrite)))

      Theorem: true-listp-of-nth-when-true-list-listp

      (defthm true-listp-of-nth-when-true-list-listp
        (implies (true-list-listp x)
                 (true-listp (nth n x)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-update-nth

      (defthm true-list-listp-of-update-nth
        (implies (true-list-listp (double-rewrite x))
                 (iff (true-list-listp (update-nth n y x))
                      (and (true-listp y)
                           (or (<= (nfix n) (len x))
                               (true-listp nil)))))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-butlast

      (defthm true-list-listp-of-butlast
        (implies (true-list-listp (double-rewrite x))
                 (true-list-listp (butlast x n)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-nthcdr

      (defthm true-list-listp-of-nthcdr
        (implies (true-list-listp (double-rewrite x))
                 (true-list-listp (nthcdr n x)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-last

      (defthm true-list-listp-of-last
        (implies (true-list-listp (double-rewrite x))
                 (true-list-listp (last x)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-remove

      (defthm true-list-listp-of-remove
        (implies (true-list-listp x)
                 (true-list-listp (remove a x)))
        :rule-classes ((:rewrite)))

      Theorem: true-list-listp-of-revappend

      (defthm true-list-listp-of-revappend
        (equal (true-list-listp (revappend x y))
               (and (true-list-listp (list-fix x))
                    (true-list-listp y)))
        :rule-classes ((:rewrite)))