• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
        • Invariant-risk
        • Errors
        • Defabbrev
        • Conses
        • Alists
          • Std/alists
            • Alist-keys
            • Remove-assocs
            • Alist-vals
            • Alist-map-vals
            • Alist-map-keys
            • Std/alists/strip-cdrs
            • Hons-rassoc-equal
            • Std/alists/hons-assoc-equal
            • Std/alists/strip-cars
            • Fal-find-any
            • Fal-extract
            • Std/alists/abstract
            • Fal-extract-vals
            • Fal-all-boundp
              • Fal-all-boundp-slow
              • Fal-all-boundp-fast
            • Std/alists/alistp
            • Append-alist-vals
            • Append-alist-keys
            • Alist-equiv
            • Hons-remove-assoc
            • Std/alists/pairlis$
            • Worth-hashing
            • Alists-agree
            • Sub-alistp
            • Alist-fix
            • Std/alists/remove-assoc-equal
            • Std/alists/assoc-equal
          • Fast-alists
          • Alistp
          • Misc/records
          • Assoc
          • Remove-assocs
          • Symbol-alistp
          • Rassoc
          • Remove-assoc
          • Depgraph
          • Remove1-assoc
          • Alist-map-vals
          • Alist-map-keys
          • Put-assoc
          • Strip-cars
          • Pairlis$
          • Strip-cdrs
          • Sublis
          • Acons
          • Eqlable-alistp
          • Assoc-string-equal
          • Alist-to-doublets
          • Character-alistp
          • String-alistp
          • Alist-keys-subsetp
          • R-symbol-alistp
          • R-eqlable-alistp
          • Pairlis
          • Pairlis-x2
          • Pairlis-x1
          • Delete-assoc
        • Set-register-invariant-risk
        • Strings
        • Program-wrapper
        • Get-internal-time
        • Basics
        • Packages
        • Oracle-eval
        • Defmacro-untouchable
        • <<
        • Primitive
        • Revert-world
        • Unmemoize
        • Set-duplicate-keys-action
        • Symbols
        • Def-list-constructor
        • Easy-simplify-term
        • Defiteration
        • Fake-oracle-eval
        • Defopen
        • Sleep
      • Operational-semantics
      • Real
      • Start-here
      • Miscellaneous
      • Output-controls
      • Bdd
      • Macros
      • Installation
      • Mailing-lists
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
    • Testing-utilities
  • Std/alists

Fal-all-boundp

(fal-all-boundp keys alist) determines if every key in keys is bound in the alist alist.

Signature
(fal-all-boundp keys alist) → bool

The alist need not be fast. If it is not fast, it may be made temporarily fast, depending on its length.

Definitions and Theorems

Function: fal-all-boundp

(defun fal-all-boundp (keys alist)
 (declare (xargs :guard t))
 (let ((__function__ 'fal-all-boundp))
  (declare (ignorable __function__))
  (mbe
      :logic
      (if (atom keys)
          t
        (and (hons-assoc-equal (car keys) alist)
             (fal-all-boundp (cdr keys) alist)))
      :exec
      (if (atom keys)
          t
        (if (and (worth-hashing keys)
                 (worth-hashing alist))
            (with-fast-alist alist (fal-all-boundp-fast keys alist))
          (fal-all-boundp-slow keys alist))))))

Theorem: fal-all-boundp-fast-removal

(defthm fal-all-boundp-fast-removal
  (equal (fal-all-boundp-fast keys alist)
         (fal-all-boundp keys alist)))

Theorem: fal-all-boundp-slow-removal

(defthm fal-all-boundp-slow-removal
  (equal (fal-all-boundp-slow keys alist)
         (fal-all-boundp keys alist)))

Theorem: fal-all-boundp-when-atom

(defthm fal-all-boundp-when-atom
  (implies (atom keys)
           (equal (fal-all-boundp keys alist) t)))

Theorem: fal-all-boundp-of-cons

(defthm fal-all-boundp-of-cons
  (equal (fal-all-boundp (cons a keys) alist)
         (and (hons-get a alist)
              (fal-all-boundp keys alist))))

Theorem: set-equiv-implies-equal-fal-all-boundp-1

(defthm set-equiv-implies-equal-fal-all-boundp-1
  (implies (set-equiv x x-equiv)
           (equal (fal-all-boundp x alist)
                  (fal-all-boundp x-equiv alist)))
  :rule-classes (:congruence))

Theorem: alist-equiv-implies-equal-fal-all-boundp-2

(defthm alist-equiv-implies-equal-fal-all-boundp-2
  (implies (alist-equiv alist alist-equiv)
           (equal (fal-all-boundp x alist)
                  (fal-all-boundp x alist-equiv)))
  :rule-classes (:congruence))

Theorem: fal-all-boundp-of-list-fix

(defthm fal-all-boundp-of-list-fix
  (equal (fal-all-boundp (list-fix x) alist)
         (fal-all-boundp x alist)))

Theorem: fal-all-boundp-of-rev

(defthm fal-all-boundp-of-rev
  (equal (fal-all-boundp (rev x) alist)
         (fal-all-boundp x alist)))

Theorem: fal-all-boundp-of-append

(defthm fal-all-boundp-of-append
  (equal (fal-all-boundp (append x y) alist)
         (and (fal-all-boundp x alist)
              (fal-all-boundp y alist))))

Theorem: fal-all-boundp-of-revappend

(defthm fal-all-boundp-of-revappend
  (equal (fal-all-boundp (revappend x y) alist)
         (and (fal-all-boundp x alist)
              (fal-all-boundp y alist))))

Subtopics

Fal-all-boundp-slow
Fal-all-boundp-fast