• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
        • Invariant-risk
        • Errors
        • Defabbrev
        • Conses
        • Alists
        • Set-register-invariant-risk
        • Strings
          • Std/strings
          • String-listp
          • Stringp
          • Length
          • Search
          • Remove-duplicates
          • Position
          • Coerce
          • Concatenate
          • Reverse
          • String
          • Subseq
          • Substitute
          • String-upcase
          • String-downcase
          • Count
          • Char
          • String<
          • String-equal
          • String-utilities
            • Code-char-injectivity-theorem
            • 8bitbytes-hexchars-conversions
            • Code-char-inverses-theorems
            • String-kinds
            • String-codelist-conversions
            • Charlist-codelist-conversions
              • Chars=>nats
                • Nats<=>chars-inverses-theorems
              • Nats=>chars
            • 8bitbytes-hexstrings-conversions
          • String-append
          • String>=
          • String<=
          • String>
          • Hex-digit-char-theorems
          • String-downcase-gen
          • String-upcase-gen
        • Program-wrapper
        • Get-internal-time
        • Basics
        • Packages
        • Oracle-eval
        • Defmacro-untouchable
        • <<
        • Primitive
        • Revert-world
        • Unmemoize
        • Set-duplicate-keys-action
        • Symbols
        • Def-list-constructor
        • Easy-simplify-term
        • Defiteration
        • Fake-oracle-eval
        • Defopen
        • Sleep
      • Operational-semantics
      • Real
      • Start-here
      • Miscellaneous
      • Output-controls
      • Bdd
      • Macros
      • Installation
      • Mailing-lists
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
    • Testing-utilities
  • Charlist-codelist-conversions

Chars=>nats

Convert a true list of characters to the corresponding true list of natural numbers below 256.

Signature
(chars=>nats chars) → nats
Arguments
chars — Guard (character-listp chars).
Returns
nats — Type (unsigned-byte-listp 8 nats).

This operation has a natural-recursive definition for logic reasoning and a tail-recursive executional for execution.

Definitions and Theorems

Function: chars=>nats-exec

(defun chars=>nats-exec (chars rev-nats)
  (declare (xargs :guard (and (character-listp chars)
                              (unsigned-byte-listp 8 rev-nats))))
  (let ((__function__ 'chars=>nats-exec))
    (declare (ignorable __function__))
    (cond ((endp chars) (rev rev-nats))
          (t (chars=>nats-exec (cdr chars)
                               (cons (char-code (car chars))
                                     rev-nats))))))

Function: chars=>nats

(defun chars=>nats (chars)
  (declare (xargs :guard (character-listp chars)))
  (let ((__function__ 'chars=>nats))
    (declare (ignorable __function__))
    (mbe :logic (cond ((endp chars) nil)
                      (t (cons (char-code (car chars))
                               (chars=>nats (cdr chars)))))
         :exec (chars=>nats-exec chars nil))))

Theorem: return-type-of-chars=>nats

(defthm return-type-of-chars=>nats
  (b* ((nats (chars=>nats chars)))
    (unsigned-byte-listp 8 nats))
  :rule-classes :rewrite)

Theorem: nat-listp-of-chars=>nats

(defthm nat-listp-of-chars=>nats
  (b* ((nats (chars=>nats chars)))
    (nat-listp nats))
  :rule-classes :rewrite)

Theorem: integer-listp-of-chars=>nats

(defthm integer-listp-of-chars=>nats
  (b* ((nats (chars=>nats chars)))
    (integer-listp nats))
  :rule-classes :rewrite)

Theorem: len-of-chars=>nats

(defthm len-of-chars=>nats
  (equal (len (chars=>nats chars))
         (len chars)))

Theorem: chars=>nats-of-cons

(defthm chars=>nats-of-cons
  (equal (chars=>nats (cons char chars))
         (cons (char-code char)
               (chars=>nats chars))))

Theorem: chars=>nats-of-append

(defthm chars=>nats-of-append
  (equal (chars=>nats (append chars1 chars2))
         (append (chars=>nats chars1)
                 (chars=>nats chars2))))

Theorem: chars=>nats-of-repeat

(defthm chars=>nats-of-repeat
  (equal (chars=>nats (repeat n char))
         (repeat n (char-code char))))

Theorem: car-of-chars=>nats

(defthm car-of-chars=>nats
  (equal (car (chars=>nats chars))
         (and (consp chars)
              (char-code (car chars)))))

Theorem: nth-of-chars=>nats

(defthm nth-of-chars=>nats
  (equal (nth i (chars=>nats chars))
         (if (< (nfix i) (len chars))
             (char-code (nth i chars))
           nil)))

Theorem: chars=>nats-of-make-character-list

(defthm chars=>nats-of-make-character-list
  (equal (chars=>nats (make-character-list x))
         (chars=>nats x)))

Theorem: consp-of-chars=>nats

(defthm consp-of-chars=>nats
  (iff (consp (chars=>nats chars))
       (consp chars)))

Theorem: chars=>nats-of-make-list-ac

(defthm chars=>nats-of-make-list-ac
  (equal (chars=>nats (make-list-ac n val ac))
         (make-list-ac n (char-code val)
                       (chars=>nats ac))))

Theorem: chars=>nats-of-take

(defthm chars=>nats-of-take
  (implies (<= (nfix n) (len chars))
           (equal (chars=>nats (take n chars))
                  (take n (chars=>nats chars)))))

Theorem: chars=>nats-of-nthcdr

(defthm chars=>nats-of-nthcdr
  (equal (chars=>nats (nthcdr n chars))
         (nthcdr n (chars=>nats chars))))

Theorem: chars=>nats-of-revappend

(defthm chars=>nats-of-revappend
  (equal (chars=>nats (revappend x y))
         (revappend (chars=>nats x)
                    (chars=>nats y))))

Theorem: chars=>nats-of-make-character-list-chars

(defthm chars=>nats-of-make-character-list-chars
  (equal (chars=>nats (make-character-list chars))
         (chars=>nats chars)))

Theorem: chars=>nats-charlisteqv-congruence-on-chars

(defthm chars=>nats-charlisteqv-congruence-on-chars
  (implies (str::charlisteqv chars chars-equiv)
           (equal (chars=>nats chars)
                  (chars=>nats chars-equiv)))
  :rule-classes :congruence)

Subtopics

Nats<=>chars-inverses-theorems
nats=>chars and chars=>nats are mutual inverses.