• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
        • Invariant-risk
        • Errors
        • Defabbrev
        • Conses
        • Alists
        • Set-register-invariant-risk
        • Strings
          • Std/strings
            • Pretty-printing
            • Printtree
            • Base64
            • Charset-p
              • Defcharset
              • Count-leading-charset
              • Str-count-leading-charset-fast
              • Str-count-leading-charset
              • Chars-in-charset-p
                • Chars-in-charset-p-basics
                • Code-in-charset-p
                • Char-in-charset-p
              • Strtok!
              • Cases
              • Concatenation
              • Character-kinds
              • Html-encoding
              • Substrings
              • Strtok
              • Equivalences
              • Url-encoding
              • Lines
              • Explode-implode-equalities
              • Ordering
              • Numbers
              • Pad-trim
              • Coercion
              • Std/strings/digit-to-char
              • Substitution
              • Symbols
            • String-listp
            • Stringp
            • Length
            • Search
            • Remove-duplicates
            • Position
            • Coerce
            • Concatenate
            • Reverse
            • String
            • Subseq
            • Substitute
            • String-upcase
            • String-downcase
            • Count
            • Char
            • String<
            • String-equal
            • String-utilities
            • String-append
            • String>=
            • String<=
            • String>
            • Hex-digit-char-theorems
            • String-downcase-gen
            • String-upcase-gen
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Miscellaneous
        • Output-controls
        • Bdd
        • Macros
        • Installation
        • Mailing-lists
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Chars-in-charset-p

    Chars-in-charset-p-basics

    Basic theorems about chars-in-charset-p, generated by std::deflist.

    Definitions and Theorems

    Theorem: chars-in-charset-p-of-cons

    (defthm chars-in-charset-p-of-cons
      (equal (chars-in-charset-p (cons a x) set)
             (and (char-in-charset-p a set)
                  (chars-in-charset-p x set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-cdr-when-chars-in-charset-p

    (defthm chars-in-charset-p-of-cdr-when-chars-in-charset-p
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (chars-in-charset-p (cdr x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-when-not-consp

    (defthm chars-in-charset-p-when-not-consp
      (implies (not (consp x))
               (chars-in-charset-p x set))
      :rule-classes ((:rewrite)))

    Theorem: char-in-charset-p-of-car-when-chars-in-charset-p

    (defthm char-in-charset-p-of-car-when-chars-in-charset-p
      (implies (chars-in-charset-p x set)
               (iff (char-in-charset-p (car x) set)
                    (or (consp x)
                        (char-in-charset-p nil set))))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-append

    (defthm chars-in-charset-p-of-append
      (equal (chars-in-charset-p (append a b) set)
             (and (chars-in-charset-p a set)
                  (chars-in-charset-p b set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-list-fix

    (defthm chars-in-charset-p-of-list-fix
      (equal (chars-in-charset-p (list-fix x) set)
             (chars-in-charset-p x set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-sfix

    (defthm chars-in-charset-p-of-sfix
      (iff (chars-in-charset-p (set::sfix x) set)
           (or (chars-in-charset-p x set)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-insert

    (defthm chars-in-charset-p-of-insert
      (iff (chars-in-charset-p (set::insert a x)
                               set)
           (and (chars-in-charset-p (set::sfix x) set)
                (char-in-charset-p a set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-delete

    (defthm chars-in-charset-p-of-delete
      (implies (chars-in-charset-p x set)
               (chars-in-charset-p (set::delete k x)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-mergesort

    (defthm chars-in-charset-p-of-mergesort
      (iff (chars-in-charset-p (set::mergesort x)
                               set)
           (chars-in-charset-p (list-fix x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-union

    (defthm chars-in-charset-p-of-union
      (iff (chars-in-charset-p (set::union x y)
                               set)
           (and (chars-in-charset-p (set::sfix x) set)
                (chars-in-charset-p (set::sfix y) set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-intersect-1

    (defthm chars-in-charset-p-of-intersect-1
      (implies (chars-in-charset-p x set)
               (chars-in-charset-p (set::intersect x y)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-intersect-2

    (defthm chars-in-charset-p-of-intersect-2
      (implies (chars-in-charset-p y set)
               (chars-in-charset-p (set::intersect x y)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-difference

    (defthm chars-in-charset-p-of-difference
      (implies (chars-in-charset-p x set)
               (chars-in-charset-p (set::difference x y)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-duplicated-members

    (defthm chars-in-charset-p-of-duplicated-members
      (implies (chars-in-charset-p x set)
               (chars-in-charset-p (acl2::duplicated-members x)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-rev

    (defthm chars-in-charset-p-of-rev
      (equal (chars-in-charset-p (rev x) set)
             (chars-in-charset-p (list-fix x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-rcons

    (defthm chars-in-charset-p-of-rcons
      (iff (chars-in-charset-p (acl2::rcons a x)
                               set)
           (and (char-in-charset-p a set)
                (chars-in-charset-p (list-fix x) set)))
      :rule-classes ((:rewrite)))

    Theorem: char-in-charset-p-when-member-equal-of-chars-in-charset-p

    (defthm char-in-charset-p-when-member-equal-of-chars-in-charset-p
      (and (implies (and (member-equal a x)
                         (chars-in-charset-p x set))
                    (char-in-charset-p a set))
           (implies (and (chars-in-charset-p x set)
                         (member-equal a x))
                    (char-in-charset-p a set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-when-subsetp-equal

    (defthm chars-in-charset-p-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (chars-in-charset-p y set))
                    (chars-in-charset-p x set))
           (implies (and (chars-in-charset-p y set)
                         (subsetp-equal x y))
                    (chars-in-charset-p x set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-set-equiv-congruence

    (defthm chars-in-charset-p-set-equiv-congruence
      (implies (acl2::set-equiv x y)
               (equal (chars-in-charset-p x set)
                      (chars-in-charset-p y set)))
      :rule-classes :congruence)

    Theorem: chars-in-charset-p-of-set-difference-equal

    (defthm chars-in-charset-p-of-set-difference-equal
      (implies (chars-in-charset-p x set)
               (chars-in-charset-p (set-difference-equal x y)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-intersection-equal-1

    (defthm chars-in-charset-p-of-intersection-equal-1
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (chars-in-charset-p (intersection-equal x y)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-intersection-equal-2

    (defthm chars-in-charset-p-of-intersection-equal-2
      (implies (chars-in-charset-p (double-rewrite y)
                                   set)
               (chars-in-charset-p (intersection-equal x y)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-union-equal

    (defthm chars-in-charset-p-of-union-equal
      (equal (chars-in-charset-p (union-equal x y)
                                 set)
             (and (chars-in-charset-p (list-fix x) set)
                  (chars-in-charset-p (double-rewrite y)
                                      set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-take

    (defthm chars-in-charset-p-of-take
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (iff (chars-in-charset-p (take n x) set)
                    (or (char-in-charset-p nil set)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-repeat

    (defthm chars-in-charset-p-of-repeat
      (iff (chars-in-charset-p (repeat n x) set)
           (or (char-in-charset-p x set) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: char-in-charset-p-of-nth-when-chars-in-charset-p

    (defthm char-in-charset-p-of-nth-when-chars-in-charset-p
      (implies (and (chars-in-charset-p x set)
                    (< (nfix n) (len x)))
               (char-in-charset-p (nth n x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-update-nth

    (defthm chars-in-charset-p-of-update-nth
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (iff (chars-in-charset-p (update-nth n y x)
                                        set)
                    (and (char-in-charset-p y set)
                         (or (<= (nfix n) (len x))
                             (char-in-charset-p nil set)))))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-butlast

    (defthm chars-in-charset-p-of-butlast
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (chars-in-charset-p (butlast x n) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-nthcdr

    (defthm chars-in-charset-p-of-nthcdr
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (chars-in-charset-p (nthcdr n x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-last

    (defthm chars-in-charset-p-of-last
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (chars-in-charset-p (last x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-remove

    (defthm chars-in-charset-p-of-remove
      (implies (chars-in-charset-p x set)
               (chars-in-charset-p (remove a x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-revappend

    (defthm chars-in-charset-p-of-revappend
      (equal (chars-in-charset-p (revappend x y) set)
             (and (chars-in-charset-p (list-fix x) set)
                  (chars-in-charset-p y set)))
      :rule-classes ((:rewrite)))