Some theorems about collect-all-anchors applied on unequivocal, backward-closed DAGs.
The first theorem says that all the anchors collected, starting from an anchor, from a backward-closed subset of an unequivocal DAG are the same in the superset. This is a simple consequence of the analogous theorem about collect-anchors.
The second theorem says that all the anchors collected, starting from a common anchor, from two backward-closed, (individually and mutually) unequivocal DAGs are the same in the two DAGS. This is a simple consequence of the analogous theorem about collect-anchors.
Theorem:
(defthm collect-all-anchors-of-unequivocal-superdag (implies (and (certificate-setp dag0) (certificate-setp dag) (subset dag0 dag) (certificate-set-unequivocalp dag) (dag-closedp dag0) (in last-anchor dag0)) (equal (collect-all-anchors last-anchor dag blockchain) (collect-all-anchors last-anchor dag0 blockchain))))
Theorem:
(defthm collect-all-anchors-of-unequivocal-dags (implies (and (certificate-setp dag1) (certificate-setp dag2) (certificate-set-unequivocalp dag1) (certificate-set-unequivocalp dag2) (certificate-sets-unequivocalp dag1 dag2) (dag-closedp dag1) (dag-closedp dag2) (dag-has-committees-p dag1 blockchain1) (dag-has-committees-p dag2 blockchain2) (same-active-committees-p blockchain1 blockchain2) (in last-anchor dag1) (in last-anchor dag2)) (equal (collect-all-anchors last-anchor dag1 blockchain1) (collect-all-anchors last-anchor dag2 blockchain2))))