• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
        • Deftreeops
          • Deftreeops-implementation
            • Deftreeops-event-generation
            • Deftreeops-info
              • Deftreeops-rulename-info
              • Deftreeops-conc-info
              • Deftreeops-rep-info
              • Deftreeops-numrange-info
              • Deftreeops-charval-info
              • Deftreeops-rep-info-list
                • Deftreeops-rep-info-list-fix
                  • Deftreeops-rep-info-list-equiv
                  • Deftreeops-rep-info-listp
                • Deftreeops-conc-info-list
                • Deftreeops-charval-info-alist
                • Deftreeops-rulename-info-alist
                • Deftreeops-numrange-info-alist
              • Deftreeops-process-inputs-and-gen-everything
              • Deftreeops-fn
              • Deftreeops-table
              • Deftreeops-input-processing
              • Deftreeops-macro-definition
            • Deftreeops-show-event
            • Deftreeops-show-info
          • Defdefparse
          • Defgrammar
          • Tree-utilities
          • Notation
          • Grammar-parser
          • Meta-circular-validation
          • Parsing-primitives-defresult
          • Parsing-primitives-seq
          • Operations
          • Examples
          • Differences-with-paper
          • Constructor-utilities
          • Grammar-printer
          • Parsing-tools
        • Vwsim
        • Isar
        • Wp-gen
        • Dimacs-reader
        • Pfcs
        • Legacy-defrstobj
        • C
        • Proof-checker-array
        • Soft
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Ethereum
        • Leftist-trees
        • Java
        • Riscv
        • Taspi
        • Bitcoin
        • Zcash
        • Des
        • X86isa
        • Sha-2
        • Yul
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Axe
        • Poseidon
        • Where-do-i-place-my-book
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Deftreeops-rep-info-list

    Deftreeops-rep-info-list-fix

    (deftreeops-rep-info-list-fix x) is a usual ACL2::fty list fixing function.

    Signature
    (deftreeops-rep-info-list-fix x) → fty::newx
    Arguments
    x — Guard (deftreeops-rep-info-listp x).
    Returns
    fty::newx — Type (deftreeops-rep-info-listp fty::newx).

    In the logic, we apply deftreeops-rep-info-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: deftreeops-rep-info-list-fix$inline

    (defun deftreeops-rep-info-list-fix$inline (x)
      (declare (xargs :guard (deftreeops-rep-info-listp x)))
      (let ((__function__ 'deftreeops-rep-info-list-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 nil
               (cons (deftreeops-rep-info-fix (car x))
                     (deftreeops-rep-info-list-fix (cdr x))))
             :exec x)))

    Theorem: deftreeops-rep-info-listp-of-deftreeops-rep-info-list-fix

    (defthm deftreeops-rep-info-listp-of-deftreeops-rep-info-list-fix
      (b* ((fty::newx (deftreeops-rep-info-list-fix$inline x)))
        (deftreeops-rep-info-listp fty::newx))
      :rule-classes :rewrite)

    Theorem: deftreeops-rep-info-list-fix-when-deftreeops-rep-info-listp

    (defthm deftreeops-rep-info-list-fix-when-deftreeops-rep-info-listp
      (implies (deftreeops-rep-info-listp x)
               (equal (deftreeops-rep-info-list-fix x)
                      x)))

    Function: deftreeops-rep-info-list-equiv$inline

    (defun deftreeops-rep-info-list-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (deftreeops-rep-info-listp acl2::x)
                                  (deftreeops-rep-info-listp acl2::y))))
      (equal (deftreeops-rep-info-list-fix acl2::x)
             (deftreeops-rep-info-list-fix acl2::y)))

    Theorem: deftreeops-rep-info-list-equiv-is-an-equivalence

    (defthm deftreeops-rep-info-list-equiv-is-an-equivalence
      (and (booleanp (deftreeops-rep-info-list-equiv x y))
           (deftreeops-rep-info-list-equiv x x)
           (implies (deftreeops-rep-info-list-equiv x y)
                    (deftreeops-rep-info-list-equiv y x))
           (implies (and (deftreeops-rep-info-list-equiv x y)
                         (deftreeops-rep-info-list-equiv y z))
                    (deftreeops-rep-info-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: deftreeops-rep-info-list-equiv-implies-equal-deftreeops-rep-info-list-fix-1

    (defthm
     deftreeops-rep-info-list-equiv-implies-equal-deftreeops-rep-info-list-fix-1
     (implies (deftreeops-rep-info-list-equiv acl2::x x-equiv)
              (equal (deftreeops-rep-info-list-fix acl2::x)
                     (deftreeops-rep-info-list-fix x-equiv)))
     :rule-classes (:congruence))

    Theorem: deftreeops-rep-info-list-fix-under-deftreeops-rep-info-list-equiv

    (defthm
      deftreeops-rep-info-list-fix-under-deftreeops-rep-info-list-equiv
      (deftreeops-rep-info-list-equiv
           (deftreeops-rep-info-list-fix acl2::x)
           acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-deftreeops-rep-info-list-fix-1-forward-to-deftreeops-rep-info-list-equiv

    (defthm
     equal-of-deftreeops-rep-info-list-fix-1-forward-to-deftreeops-rep-info-list-equiv
     (implies (equal (deftreeops-rep-info-list-fix acl2::x)
                     acl2::y)
              (deftreeops-rep-info-list-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: equal-of-deftreeops-rep-info-list-fix-2-forward-to-deftreeops-rep-info-list-equiv

    (defthm
     equal-of-deftreeops-rep-info-list-fix-2-forward-to-deftreeops-rep-info-list-equiv
     (implies (equal acl2::x
                     (deftreeops-rep-info-list-fix acl2::y))
              (deftreeops-rep-info-list-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: deftreeops-rep-info-list-equiv-of-deftreeops-rep-info-list-fix-1-forward

    (defthm
     deftreeops-rep-info-list-equiv-of-deftreeops-rep-info-list-fix-1-forward
     (implies (deftreeops-rep-info-list-equiv
                   (deftreeops-rep-info-list-fix acl2::x)
                   acl2::y)
              (deftreeops-rep-info-list-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: deftreeops-rep-info-list-equiv-of-deftreeops-rep-info-list-fix-2-forward

    (defthm
     deftreeops-rep-info-list-equiv-of-deftreeops-rep-info-list-fix-2-forward
     (implies (deftreeops-rep-info-list-equiv
                   acl2::x
                   (deftreeops-rep-info-list-fix acl2::y))
              (deftreeops-rep-info-list-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: car-of-deftreeops-rep-info-list-fix-x-under-deftreeops-rep-info-equiv

    (defthm
     car-of-deftreeops-rep-info-list-fix-x-under-deftreeops-rep-info-equiv
     (deftreeops-rep-info-equiv
          (car (deftreeops-rep-info-list-fix acl2::x))
          (car acl2::x)))

    Theorem: car-deftreeops-rep-info-list-equiv-congruence-on-x-under-deftreeops-rep-info-equiv

    (defthm
     car-deftreeops-rep-info-list-equiv-congruence-on-x-under-deftreeops-rep-info-equiv
     (implies (deftreeops-rep-info-list-equiv acl2::x x-equiv)
              (deftreeops-rep-info-equiv (car acl2::x)
                                         (car x-equiv)))
     :rule-classes :congruence)

    Theorem: cdr-of-deftreeops-rep-info-list-fix-x-under-deftreeops-rep-info-list-equiv

    (defthm
     cdr-of-deftreeops-rep-info-list-fix-x-under-deftreeops-rep-info-list-equiv
     (deftreeops-rep-info-list-equiv
          (cdr (deftreeops-rep-info-list-fix acl2::x))
          (cdr acl2::x)))

    Theorem: cdr-deftreeops-rep-info-list-equiv-congruence-on-x-under-deftreeops-rep-info-list-equiv

    (defthm
     cdr-deftreeops-rep-info-list-equiv-congruence-on-x-under-deftreeops-rep-info-list-equiv
     (implies (deftreeops-rep-info-list-equiv acl2::x x-equiv)
              (deftreeops-rep-info-list-equiv (cdr acl2::x)
                                              (cdr x-equiv)))
     :rule-classes :congruence)

    Theorem: cons-of-deftreeops-rep-info-fix-x-under-deftreeops-rep-info-list-equiv

    (defthm
     cons-of-deftreeops-rep-info-fix-x-under-deftreeops-rep-info-list-equiv
     (deftreeops-rep-info-list-equiv
          (cons (deftreeops-rep-info-fix acl2::x)
                acl2::y)
          (cons acl2::x acl2::y)))

    Theorem: cons-deftreeops-rep-info-equiv-congruence-on-x-under-deftreeops-rep-info-list-equiv

    (defthm
     cons-deftreeops-rep-info-equiv-congruence-on-x-under-deftreeops-rep-info-list-equiv
     (implies (deftreeops-rep-info-equiv acl2::x x-equiv)
              (deftreeops-rep-info-list-equiv (cons acl2::x acl2::y)
                                              (cons x-equiv acl2::y)))
     :rule-classes :congruence)

    Theorem: cons-of-deftreeops-rep-info-list-fix-y-under-deftreeops-rep-info-list-equiv

    (defthm
     cons-of-deftreeops-rep-info-list-fix-y-under-deftreeops-rep-info-list-equiv
     (deftreeops-rep-info-list-equiv
          (cons acl2::x
                (deftreeops-rep-info-list-fix acl2::y))
          (cons acl2::x acl2::y)))

    Theorem: cons-deftreeops-rep-info-list-equiv-congruence-on-y-under-deftreeops-rep-info-list-equiv

    (defthm
     cons-deftreeops-rep-info-list-equiv-congruence-on-y-under-deftreeops-rep-info-list-equiv
     (implies (deftreeops-rep-info-list-equiv acl2::y y-equiv)
              (deftreeops-rep-info-list-equiv (cons acl2::x acl2::y)
                                              (cons acl2::x y-equiv)))
     :rule-classes :congruence)

    Theorem: consp-of-deftreeops-rep-info-list-fix

    (defthm consp-of-deftreeops-rep-info-list-fix
      (equal (consp (deftreeops-rep-info-list-fix acl2::x))
             (consp acl2::x)))

    Theorem: deftreeops-rep-info-list-fix-under-iff

    (defthm deftreeops-rep-info-list-fix-under-iff
      (iff (deftreeops-rep-info-list-fix acl2::x)
           (consp acl2::x)))

    Theorem: deftreeops-rep-info-list-fix-of-cons

    (defthm deftreeops-rep-info-list-fix-of-cons
      (equal (deftreeops-rep-info-list-fix (cons a x))
             (cons (deftreeops-rep-info-fix a)
                   (deftreeops-rep-info-list-fix x))))

    Theorem: len-of-deftreeops-rep-info-list-fix

    (defthm len-of-deftreeops-rep-info-list-fix
      (equal (len (deftreeops-rep-info-list-fix acl2::x))
             (len acl2::x)))

    Theorem: deftreeops-rep-info-list-fix-of-append

    (defthm deftreeops-rep-info-list-fix-of-append
      (equal (deftreeops-rep-info-list-fix (append std::a std::b))
             (append (deftreeops-rep-info-list-fix std::a)
                     (deftreeops-rep-info-list-fix std::b))))

    Theorem: deftreeops-rep-info-list-fix-of-repeat

    (defthm deftreeops-rep-info-list-fix-of-repeat
      (equal (deftreeops-rep-info-list-fix (repeat acl2::n acl2::x))
             (repeat acl2::n
                     (deftreeops-rep-info-fix acl2::x))))

    Theorem: list-equiv-refines-deftreeops-rep-info-list-equiv

    (defthm list-equiv-refines-deftreeops-rep-info-list-equiv
      (implies (list-equiv acl2::x acl2::y)
               (deftreeops-rep-info-list-equiv acl2::x acl2::y))
      :rule-classes :refinement)

    Theorem: nth-of-deftreeops-rep-info-list-fix

    (defthm nth-of-deftreeops-rep-info-list-fix
      (equal (nth acl2::n
                  (deftreeops-rep-info-list-fix acl2::x))
             (if (< (nfix acl2::n) (len acl2::x))
                 (deftreeops-rep-info-fix (nth acl2::n acl2::x))
               nil)))

    Theorem: deftreeops-rep-info-list-equiv-implies-deftreeops-rep-info-list-equiv-append-1

    (defthm
     deftreeops-rep-info-list-equiv-implies-deftreeops-rep-info-list-equiv-append-1
     (implies
         (deftreeops-rep-info-list-equiv acl2::x fty::x-equiv)
         (deftreeops-rep-info-list-equiv (append acl2::x acl2::y)
                                         (append fty::x-equiv acl2::y)))
     :rule-classes (:congruence))

    Theorem: deftreeops-rep-info-list-equiv-implies-deftreeops-rep-info-list-equiv-append-2

    (defthm
     deftreeops-rep-info-list-equiv-implies-deftreeops-rep-info-list-equiv-append-2
     (implies
         (deftreeops-rep-info-list-equiv acl2::y fty::y-equiv)
         (deftreeops-rep-info-list-equiv (append acl2::x acl2::y)
                                         (append acl2::x fty::y-equiv)))
     :rule-classes (:congruence))

    Theorem: deftreeops-rep-info-list-equiv-implies-deftreeops-rep-info-list-equiv-nthcdr-2

    (defthm
     deftreeops-rep-info-list-equiv-implies-deftreeops-rep-info-list-equiv-nthcdr-2
     (implies (deftreeops-rep-info-list-equiv acl2::l l-equiv)
              (deftreeops-rep-info-list-equiv (nthcdr acl2::n acl2::l)
                                              (nthcdr acl2::n l-equiv)))
     :rule-classes (:congruence))

    Theorem: deftreeops-rep-info-list-equiv-implies-deftreeops-rep-info-list-equiv-take-2

    (defthm
     deftreeops-rep-info-list-equiv-implies-deftreeops-rep-info-list-equiv-take-2
     (implies (deftreeops-rep-info-list-equiv acl2::l l-equiv)
              (deftreeops-rep-info-list-equiv (take acl2::n acl2::l)
                                              (take acl2::n l-equiv)))
     :rule-classes (:congruence))